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PREFACE 

This text is the compilation of courses developed by the Antonin Svoboda and presented by him while he was 
Professor Emeritus of the Computer Science Department of the University of California, Los Angeles (UCLA), and of 
courses developed by one of his graduate students, Donnamaie E. White, and presented by her while she was on the 
part-time faculty of the School of Engineering, California State University, Los Angeles (Cal-State LA). The material 
was first combined and presented by its authors at a professional seminar held by the University Extension in early 
1977. 

Over his lifetime, Svoboda pursued many interests. Those aspects of his work that are represented here are 
concerned with his Parallel Boolean Processor and with his theorems and his unique approaches to finding the 
minimal or optimal solutions to fundamental combinational and sequential circuit design problems. The Triadic 
notation, which appears heavily throughout many of his published papers, is clearly documented for the first time. 

Dr. Svoboda built the world's first fault-tolerant computer, SAPO, for the Academie of Science in Prague. Designed 
in 1950, SAPO was operational in 1954. 

Chapters 3, 5, and 7 of this text present the complete listings of the APL Circuit Laboratory which Svoboda created 
while he was at UCLA.  

[There are known to be at least 2 typing errors in the listings. The listings are produced as originally published, 
however, since no APL compiler is available to test them. If you can do so, by all means let the author know.]  

A number of examples are included in the surrounding chapters to demonstrate the application of the various APL 
program modules. 

The remaining chapters contain detailed explanations and examples of various design problems from minimization of 
single-output combinational functions throughout the mosaics of multiple output functions. An explanation of the 
Parallel Boolean Processor and its fundamental theorems is offered without any attempt to duplicate the material 
included in the referenced published papers. Rather, the intent is to clarify the earlier papers that have been edited 
down to meet space restrictions at the time that they were published.  

[In other words, some of the reductions for space have proven to be catastrophic, as is the case with the Triadic 
Graphical Calculus.]  

The new, unpublished COVERAGE algorithm is described. 

Applications of the Parallel Boolean Processor are implied, with several new applications presented in detail. These 
include the development of the Test Sequence for fault detection testing of combinational circuits. [This was later 
expanded to apply to the determination of coverage for functional testing of ASICs.] 

The minimization techniques: 

• the weight algorithm 

• fundamental product 

• mosaics of functions 

• coverage 

are representations of the application areas of Svoboda's theorems. In fact, the techniques described in Chapters 8-
11 are verbal descriptions of the APL Program Library presented in Chapters 1-7. The APL Program Package was 
written using Triadic Notation. 

Svoboda's approaches are both unique and elegant in their simplicity. The Marquand Map, proposed in 1881 and 
overlooked by logic designers until recently, and the Triadic Map developed by Svoboda are the tools that he used to 
graphically explain his theorems and techniques. These are the "missing links" which anyone attempting to study the 
basic fundamentals of Boolean Logic will find invaluable. They [the theorems and techniques] lend themselves readily 
to algorithmic manipulation via APL. 



This book is intended as a reference text rather than as a textbook per se although the material has been combined 
with appropriate exercises and lecture material and used by both of the authors in undergraduate and graduate logic 
design courses. Its primary function is to document the extensive APL Circuit Laboratory and Svoboda's techniques 
for the benefit of those who were not privileged enough to have attended his seminars during his lifetime 

Applications of the Parallel Boolean Processor are implied, with several new applications presented in detail. These 
include the development of the Test Sequence for fault detection testing of combinational circuits. 

The minimization techniques:   

1) the weight algorithm;  

2) fundamental product;  

3) mosaics of functions and  

4) coverage  

are representations of the application areas of Svoboda's theorems. In fact, the techniques described in chapters 8-
11 are verbal descriptions of the APL program library presented in chapters 1-7. The APL package was written using 
triadic notation. 

Svoboda's approaches are unique and elegant in their simplicity. The Marquand map, proposed in 1881 and 
overlooked by logic designers until recently, and the Triadic map developed by Svoboda are the tools which he uses 
to graphically explain his theorems and techniques. These are the "missing links" which anyone attempting to study 
the basic fundamentals of Boolean logic will find invaluable. They lend themselves readily to algorithmic manipulation 
via APL. 

This book is intended as a reference text rather than as a text book per se although the material has been 
combined with appropriate exercises and lecture material and used by both of the authors in both undergraduate and 
graduate courses.  Its primary function is to document the extensive APL circuit laboratory (no longer in use) and 
Svoboda's techniques for the benefit of those who were not privileged enough to have attended his seminars. 

Donnamaie E. White,  

PhD Computer Science, UCLA 
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Chapter 1 

1 Computer-Aided Logic Design 

1.1 Introduction 

Hardware components of computers are physical models of logical reasoning. Procedures based on ligical disciplines 
of mathematics are used to design these components1. Examples of such procedures will be presented here in the 
form of APL programs intended to solve basic problems of computer logic design. 2 

The three blocks of programs given here were used by the partticipants of the Short Course, Advanced Logical 
Circuit Design Techniques, presented by UCLA Extension (March 1977). They are: 

1. SYSTEM –  

a. permits the transformation of a problem specification into a set of Boolean functions defined by a 
truth table;  

b. derives the Existence Function of the system;  

c. and provides a tool  

i. for minimization  

ii. and for logical relation analysis. 

2. OPTIMA – permits the optimal design of a two-level multiple-output combinational circuit based on a 
rigorous mathematical principle. 

3. BOOL – solves systems of Boolean equations of the general type; used for computer-aided design of 
sequential circuits. 

To use the programs effectively, it is necessary that one understand: 

1. the general philosophy of problem specification and solution; 

2. the programming symbolism; and the interpretation of the printout. 

1.2 General Philosophy of Problem Specification and Solution 

The following unified point of view is recommended for solving problems in logic design: 

1. SPECIFICATIONS should be presented in propositional calculus, Boolean algebra, or in the algebra of sets 
(classes); 

2. EXECUTION of the solution procedure should be based on the algebra of sets (chart methods); 

3. RESULTS are represented formally in Boolean algebra or by graphics. 

The hardware design deals with physical phenomena related by a cause-effect relationship between states (events). 
The state of a system can be described as a configuration of validities of propositions concerning measurable 
quantities (i.e., voltages, currents, etc.). 

                                                           

1 Which led to the creation of RTL languages such a VHDL and Verilog, and the collapse of drawn schematics to create a design. 
2 This should not be restricted to "computer" design – i.e., covers any logic design. 
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EXAMPLE 1. For voltage measurement of terminals X1, X2, … , Xj, … we use Propositional Variables (x  1), (x  2), 
… , (X  j), … attached to the propositions describing the outcome of voltage measurement: 

(X  j) ≡ (Terminal XJ is HIGH) ≡ (Voltage at XJ is above 4.5V)3 

(X  j) ≡ (Terminal XJ is LOW) ≡ (Voltage at XJ is below 0.5V) 

Note:  

1. The existence of two thresholds and their separation 

2. (X  j) is a negation of (X  j) so that  

 [(X  j) is TRUE] → [(X  j) is FALSE] and visa versa; 

3. The underlining of literals is used to express negation (complementation) 

The transition of a system from one state to another will be described by two subsequent states. The first will be 
called the cause of the state which follows it, which in turn will be called its effect. 

Logical time will be defined later and the definition will be derived from the cause-effect relationship previously 
mentioned. 

A subsystem is a subset of variables of a system that possesses certain properties. For instance, input variables of a 
combinational circuit have the property that they are mutually independent, and the output variables of the circuit 
have the property that each one is a Boolean function of the input variables (exclusively). In this case, we have two 
subsystems within a system. There may be more than two subsystems to consider when solving some problems of 
circuit design. 

The logical relation between subsystems belonging to a system will be explained here for two subsystems by the 
use of Marquand Charts4 of Boolean Functions. 

Example 2: Subsystem with X-variables: (X  j); j = 1, 2, 3; and the subsystem with Y-variables: (Y  k); k = 1, 2; 
together these form a system. The validities of X-variables can take on eight different configurations; the validities of 
Y-variables can take on four configurations. When there is no logical relation between the subsystems, each of the 32 
validity configurations of all five variables of the system is equally possible. When the system obeys postulated 
conditions (constraints), there will be a set of configurations (here from the set of 32) that will be ruled out (discarded). 
The configurations that survive the process of elimination define the Existence Function of the system as a whole. 

To describe the Marquand Chart suitable to explain the concept of logical relation, the configurations of validities of X- 
and Y-variables are identified (labeled) by integers in the usual way. (See Figure 1-1  A Marquand Chart for a 5-
Variable System) 

The eight possible configurations of validities of X-variables will be identified by the integer IX, where IX ε {0, 1, 2, 3, 
4, 5, 6, 7} under the rule that IX, written as a three-bit binary number (x3, x2, x1)2, belongs to the configuration of 
validities: (X  3) = x3, (X  2) = x2, (X  1) = x1. For instance, IX = 3 = (011)2 stands for (X  3) = 0 (false) and (X  2) = (X  
1) = 1 (true). 

The Marquand Chart for the system of our example is shown in Figure 1-1. The horizontal scale of the chart belongs 
to the subsystem X: (X  j); j = 1, 2, 3; NX = 3. The columns are labeled in IX from left to right, IX = 0, 1, 2, 3, 4, 5, 6, 7; 
the number of columns (total number of validity configurations) is designated by NNX, NNX = 8. The vertical scale of 
the charts belongs to the subsystem Y: (Y  k); k = 1, 2; NY = 2, NNY = 4 (number of rows). The rows are labeled in IY 
= 0, 1, 2, 3. 

                                                           
3  5V system  
4 1880 mathematical paper by Marquand introduced the mapping that predates the Karnough map 
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0          1           2           3           4          5          6            7

8          9          10         11         12        13        14         15

16          17        18          19         20       21        22          23

24         25         26          27         28       29        30          31

IX = 0          1           2           3           4          5          6            7

(Y  1) = 1IY = 0

        1

        2

        3

(y2, y1)

(X  1) = 1
(X  2) = 1
(X  3) = 1

 

Figure 1-1  A Marquand Chart for a 5-Variable System 
Marquand conceived his chart in the binary way (in agreement wit the labeleing practices of today). Written as binary 
numbers, the identifiers IX, IY produce the variables' validity configuration (Y2, Y1, X3, X2, X1) of all five variables of 
the system. The identifier of that configuration IS = (y2 y1 x3 x2 x1)2 = 8 x IY + IX.  Each window in Figure 1-1 is 
labeled with the corresponding value of IS.  

IS = (1 1 1 1 1)2 = 31, while IS = (0 0 0 0 0)2 = 0, and IS = (0 1 1 1 1)2 = 15 

The values of IS follow each other in a natural way. This rule holds true for a Marquand Chart pf any dimension and 
any shape. The logical distance of a pair of windows on the chart is the sum of the disagreements in bits of their 
binary identifiers, IS.  Two windows that are at the logical distance of one unit possess identifier IS values that differ 
by 2k (where k is an integer), thus implying that two windows that are at the logical distance of one unit must fall both 
in the same row or both in the same column. 

Finally, the binary background of the chart leads to the following simple rule: If a Marquand Chart of any size or 
shape is divided into vertical bands of equal width 2k+1, then any two windows within the same band possessing the 
horizontal distance of 2k (half of band) have a logical distance of one unit. The same rule holds for division into 
horizontal bands of the equal width, 2k+1., Any two windows in the vertical distance of 2k (both being in the same 
column, of course) that fall in the same horizontal band, have the logical distance of one unit. 

Example 3: Four vertical bands in Figure 1-1 have the width 21 = 2 windows. For that reason, any two windows at the 
horizontal distance of 20 (1 window) falling in the same band have the logical distance of one unit; for instance, pairs 
of windows labeled in IS:  (0, 1), (12, 13), (26, 27). But pair (21, 22) which has a horizontal distance of one window, is 
composed of elements that do fall in the same band; their logical distance is not equal to one unit. Horizontal band 
division with band width 2 shows that (21, 29) are windows of logical distance of one unit, but that windows (10, 18) 
are not. Vertical band division with band width 4 indicates that (17, 19) are at logical distance of one unit and the (19, 
21) are not. 

Returning back to the logical relation between subsystems, four examples are offered. (See Figure 1-2)  

Example 4. Figure 1-2a  shows the Existence Function of a system whose subsystems X, Y are completely 
independent. The system X ∪ Y is without constraints. The chart is filled with "1"s to express that every possible 
validity configuration exists. 

Example 5. Figure 1-2b shows the Existence Function of a system subjected to some constraints. In general, a given 
Existence Function can belong to many different sets of constraints. We will mention the most obvious: 

1. For IX € {2, 3, 4, 5, 6}, the value of IY is uniquely determined. In other words, IY is a function of IX within 
that domain. 

2. For IX = 1, it is IY = 1 XOR 2 (exclusive OR). 

In another form 

 (IX = 1) → (Y2  ≠  Y1) 

3. For IX = 0, it is IY = (any). In other words, 
 
               (IX = 0) → (any one from all) 
                                 (don't care which IY) 
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4. The input configuration belonging to IX = 7 is forbidden as the circuit has no steady-state for X3 = X2 = X1. 

5.  

Figure 1-2  Examples of Existence Functions 
 

Example 6: Figure 1-2c shows the Existence Function of the full adder (Figure 1-3). It is a combinational circuit: A 
definite output signal configuration belongs to any input signal configuration. In other words, the chart of the 
Existence Function must have exactly one non-zero in each column. In another form, IY = f(IX). We say that the 
subsystem Y is a function of the subsystem X. Symbolically, IX -> IY. The constraint for the full adder, written in APL, 
is: 

 ((Y  1) + 2x(Y  2)) = (X  3) + (X  2) + (X  1)         (1.1) 

The equation means that the sum ∑j (X  j) (count of HIGHs at the input of the full adder) is equal to the binary number 
(y2 y1)2 (represented in HIGHs at the outputs. 

 

Full AdderX3

X2

X1

Y2

Y1

 

Figure 1-3  A Combinational Circuit 
It is important to point out that Figure 1-2c is the chart of the Existence Function of the full adder and not the truth 
table of functions generated by the full adder. The relation between the Existence Function and the truth table is very 
simple: 

1. The Existence Function can be replaced by a truth table uniquely if and only if each column of the 
(normalized) chart of the Existence Function contains exactly one non-zero. 

2. The truth table function ((Y  k) = 1) -> (Z  k) can be deciphered from the Existence Function by reading IX 
values for which (Y  k) = 1. 

To get the truth table of the full adder from its Existence Function in Figure 1-2c, we start with (Y  1) = 1 to get (Z  1). 
Configurations with (Y  1) = 1 are all on the rows IY  € {1, 3},a and the Existence Function indicates that only four 
cases exist with IX € {1, 2, 4, 7}, so that (Z  1) ≡ (0110 1001). Similarly, (Y  2) = 1 is true only for configurations in 
rows IY € {2, 3}. The Existence Function indicates four cases:  IX € {3, 5, 6, 7}, so (Z  2) ≡ (0001 01111). 

The complete truth table (presented horizontally, as by the APL programs) is shown in Figure 1-5.  
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              (X  1) ≡  0 1 0 1 0 1 0 1 

(X  2) ≡  0 0 1 1 0 0 1 1 

(X  3) ≡  0 0 0 0 1 1 1 1 
___________________ 

(Z  1) ≡  0 1 1 0 1 0 0 1 

(Z  2) ≡  0 0 0 1 0 1 1 1 

Figure 1-4  Truth Table of Full Adder 
 

Example 7: Figure 1-2d shows the Existence Function of a NOR flip-flop with a reset terminal, X3. The conventional  
diagram of this flip-flop is shown in Figure 1-5. The corresponding system is composed of the input subsystem (X  j); j 
= 1, 2, 3, and the output subsystem (Y  k); k = 1, 2. The diagram in Figure 1-5 was postulated as the only constraint 
of the system. The equations of the circuit, written in APL,  

 

((Y  2)  = (Y  1) ^ (X  1)) ^ ((Y  1)  = (Y  2) ^ (X  2) ^ (X  3)) 

are satisfied for validity configurations corresponding to windows where the Existence Function (Figure 1-2d) is true. 

(X  3)

(X  2)

(X  1)

(Y  1)

(Y  2)
 

Figure 1-5  NOR Flip-Flop with Reset 
 The circuit properties can be derived from that function: 

1. It is clear that the Existence Function in Figure 1-2d cannot be replaced by a truth table because not every 
column contains exactly one nonzero (see column IX = 0). Thus, the circuit is not combinational but rather 
sequential (containing feed-backs). 

2. There are exactly nine steady states: Two for IX = 0 and one for each IX € {1, 2, 3, 4, 5, 6, 7}. 

3. When (X  3) = 1 (reset signal HIGH), then IX € {4, 5, 6, 7}. All four existing validity configurations for that 
domain (right-hand half of the chart) have (Y  1) = 0 in common. That means that X3 -> Y1, independent of 
anything else. 

4. When (X  j) = 0 for all j, then IX = 0 and the circuit can be either of two steady states: IX € {1, 2}, in which 
case (Y  2) ≠ (Y  1). 

5. (Refer to  Figure 1-6) Starting with the steady state: IS = 16, the change of X1 alone (IX = 0→1, Column IX = 
1) produces the unstable state: IS = 17, which goes over to the steady state: IS = 9. The change of X2 alone 
(IX = 0 →2, column IX = 2) produces the unstable state: IS = 10, which goes over to the stable state: IS = 
18. 

A change of X2 alone (IX = 2 → 0) enforces the steady state: IS = 16. Flip-flop transition is thus illustrated. 
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IS Y2 Y1 X3 X2 X1 

16 1 0 0 0 0 

17 1 0 0 0 1 

9 0 1 0 0 1 

9 0 1 0 0 1 

8 0 1 0 0 0 

8 0 1 0 0 0 

10 0 1 0 1 0 

18 1 0 0 1 0 

18  0 0 1 0 

16 1 0 0 0 0 

 Figure 1-6  State Transaction for Flip-Flop of Figure 1-5 
The reader is now invited to go to Chapter 2, which illustrates the use of the program SYSTEM to specify Boolean 
functions either by the procedure SPACE (Existence Function development) or by the procedure TABLE, producing a 
truth table of functions, either from their sufficient functions or by listing). 

The library program SYSTEM has two groups of procedures. The first prepares truth tables or Existence Functions 
(discriminants) of a system subjected to a set of constraints. The second group contains important design procedures 
for the special treatment of Boolean functions such as charting, minimization of ∑∏ and ∏∑ forms, listing prime 
implicants, and evaluation of the Boolean difference. Some of the algorithms used in the APL programs differ from 
those found in teaching texts --- the triadic ordering of implicants, minimization by extension of a ∑∏ form, and 
multiple-output design optimization based on S-minimization of a mosaic Boolean function are mentioned to name he 
most important. Explanations of these algorithms will be given in he second section of this text, and logical 
instruments will be offered there as efficient means of teaching the basic concepts. 

The library program BOOL solves systems of Boolean equations of a general type by enumeration. The procedure is 
entered by calling BILL, and the equations are entered by calling FORMULA. The first literals of the alphabet 
represent the Boolean constants (for instance: A, b, c, D), and the literals that follow them in their natural sequence 
represent the unknowns (for instance: E, F). The values 0 (false) and 1 (true) may be used (alone!) on the right-hand 
side of the formula only. The sum of products form must be used on both sides of the formula. Only two relations 
between the sides are accepted by the programs, EQUIVALENCE (=) and IMPLICATION ( →) (the APL right-arrow). 
Underlining may be used to represent negation. 

 Example 8. Examples of correctly-composed formulas (It does not matter how many variables are constants and 
how many are unknowns): 

 CA + BD = AB + CDA 

 ACD + B = 0 

 ED +ED = 1 

 ABD -> CE 

 DC + CA -> E +BA 

 EDCB  -> A + B + D 

Note: Spaces within a product or around the signs are acceptable. The sign “+” means OR; the sign “->” means 
“implies”. 
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2 Chapter 2  Generation and Processing of Boolean Functions 

2.1 Introduction 

The program block, SYSTEM, contains programs for: 

1. Generating the Existence Function of as Boolean function from a set of constraints 

2. Generating the truth table of a Boolean function from constraints or from its decimal equivalents 

3. Analyzing or processing a Boolean function after it has been entered via either of the first two procedures 

This chapter describes and illustrates the use of these programs. 

2.2 Existence Function Generation 

Figure 2-1 shows the sequence of programs to be executed. 

 

Figure 2-1  Existence Function Generation 
 

1. The sequence always starts with LOGIC, which allows the user to type in the number of independent 
variables:  (X  j), j = 1, 2, … , NX 

2. Function SPACE is called to establish the number of dependent variables (Y  k),, k = 1, 2, … , NY. 

3. Then, Function EQUATION is called as many times as there are constraints postulated for the system.  

4. Calling DISCRIMINANT causes the existence function of the system to be printed in the form of a chart, 
where variables (X  j) are represented horizontally and (Y  k) are represented vertically. The Existence 
Function depends on all variables of the system, and is true for each validity configuration. 

(X1, X2, … , Xnx, Y1, Y2, … , Yny) 

Which satisfies all the constraints of the system.  

5. The constraints from a system of Boolean equations, which can be solved by calling SOLVE after 
DISCRIMINANT has been formed. Each of the existing solutions is printed in the form: 

(Z  k)  =  Function of (X  j) 

For k = 1, 2, … ,NZ with NZ = NY. The substitution of a solution in any equation (constraint) reduce that equation to 
an identity. 
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2.3 Truth Table Generation 

Figure 2-2 shows the sequence of programs used to generate a truth table of Boolean functions (Z  k), k = 1, 2, 3, … , 
NZ. 

 

Figure 2-2  Truth Table Generation 
 

The sequence starts with LOGIC again (to set the number of independent variables (X  j), j = 1, 2, 3, … , NX). Routine 
TABLE prepares the format of the truth table (by setting the number o f functions (Z  k), k = 1, 2, … , NZ to be stored). 

The routines FTRUE and FFALSE develop Boolean functions from APL-defined constraints. The routine FLIST 
develops the Boolean function from its decimal equivalent (the conventional approach). 

2.4 Processing of Boolean Functions 

To process Boolean  functions for logic design, a number of routines are available. These are listed in Table 2-1. 

 

Table 2-1  Routine for Processing Boolean Functions 

Routine Description 

F CHART WIDE Prints the Marquand chart of the function F whose width is indicated by integer WIDE 

MINIMA F Prints one of the N-minimal ∑Π forms of the function F.  
Symbolism of the printout: A ≡ (X  1), B  ≡ (X  2), etc.  

PRIMEIMPLICANT 0F Prints the sum of all prime implicants of the function 0F in the algebraic form using 
the symbolism described for MINIMA 

DEGENERATION F Looks for the latest dependencies between variables in a system with Existence 
Function F 

K BULDIF F Develops and prints the Boolean difference of the function F in relation to the variable 
(X  k) 

DECIMIN F Produces decimal equivalents defining ONEs of a Boolean function F stored as a 
string of ZEROs, ONEs, and TWOs (DON’T’CARES) 

DECIDONT F Produces decimal equivalents defining the DON’T CARES of a Boolean function F 
stored as defined for DECIMIN 
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2.5 Examples 

Example 2.5.1. Develop the Existence Function of the full adder (see Figure 1-3). Use its equation in APL given in 
formula 1.1 

Procedure: 

1. Load program block SYSTEM 

2. Call ∆SYSTEM for explanations 

3. Begin by calling:  

LOGIC 
NUMBER OF X-VARIABLES: 
�: 
 3 
NX= 3 
SYMBOLS FOR X-VARIABLES: (X J). (X J); J = 1 2 3 
CALL: TABLE, SPACE 

To produce the Existence Function of this system, call: 

 SPACE 
NUMBER OF Y-VARIABLES: 
�: 
 2 
SYMBOLS FOR Y-0VARIALES: (Y K), (Y K); K = 1 2 
NY= 2 
XY-SPACE SYMBOL:  F[Y;X] 
CALL: EQUATION 
 
 EQUATION 
WRITE THE EQUATION IN THE PRESCRIBED FORM: 
F„F^(((Y 1)+2X(Y 2)=(X 3)+(X 2)+(X 1)) 

 

Note: At this moment the terminal is in the APL immediate-execution mode.1  The equation can be represented by 
any number of conditions executed immediately after one another: 

F „ F ^ (Relation 1) 
F „ F ^ (Relation 2) 
F „ F ^ (Relation 3) 
F „ F ^ (Relation 41) 

o 
o 
o 

F „ F ^ (Relation n) 

Of course, each relation must be in the prescribed form. Routine DISCRIMINAANT can be called at any time to check 
the evolution of the Existence Function. 

                                                           

1 Reference to the APL computer terminal. An IBM Selectric hooked up to the system and equipped with an APL type-ball. 
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When all relations (i.e., constraints of the system) have been introduced, the Existence Function is printed by calling 
DISCRIMINANT. 

 DISCRIMINANT 
HORIZONTAL SCALE: (X J) FOR J = 1 2 3 
VERTICAL SCALE: (Y K) FOR K = 1 2 
1 0 0 0 0 0 0 0 
0 1 1 0 1 0 0 0 
0 0 0 1 0 1 1 0 
0 0 0 0 0 0 0 1 

Compare this with 1.2c.  

The Existence Function always has the X-scale printed horizontally, and the Y-scale vertically. A with a Marquand 
chart, the X-coordinate IX = (x3 x2 x1)2 = 0, 1, … , 7, and the Y-coordinate (downward) IY = (y2 y1)2 = 0, 1, 2, 3. Each 
column contains exactly one non-zero. For that reason, we can develop the truth table of the full adder from its 
Existence Function. At the terminal, we do it by calling: 

 SOLVE 

NUMBER OF SOLUTIONS AFTER CONSTRAINTS: SOL = 1 

DESIRED SOLUTION VECTOR: 

�: 
 1 

SOLUTION NUMBER: 1 

(Z 1) … 0 1 1 0 1 0 0 1   [1 2 4 7] ∪ ( ) 

(Z 2) … 0 0 0 1 0 1 1 1   [3 5 6 7] ∪ ( ) 

Explanation: The number of solutions is equal to the product of eight integers (in this example), one for each column. 
Each integer is equal to the count of non-zeros in the column. Here, SOL = 1 (number of solutions); the solution has 
only one element, element 1 (first solution); and the resulting Boolean functions of the truth table are designated by 
 (Z  1) for the output (Y  1) = 1 and (Z  2) for the output (Y  2) = 1. 

In the present case, functions do not contain DON’T CARES (expressed by the integer 2 within the string on the left-
hand side of the printout and by decimal equivalents in the parentheses at the right-hand side. To print the truth table 
we call: 

 FX 

0 1 1 0 1 0 0 1 

0 0 0 1 0 1 1 1 

To understand the reason for using the symbol (Z  1) for the output Boolean function at the terminal (Y  1), let us call: 

 (Y 1) 

 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 

 (Y 2) 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 

 

The N-minimal ∑π form of the functions (Z  k) of the truth table can be obtained immediately by the procedure 
MINIMA. 

 MINIMA (Z 1) 

ABC  + ABC  + ABC  + ABC 

CRITICAL SET: 7 4 2 1 

 

 MINIMA (Z 2) 

BC + AC + AB 

CRITICAL SET: 6 5 3 
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 MINIMA (Z 2) 

AB + AC + BC 

CRITICAL SET: 4 2 1 

 

 MINIMA  (Z 1) 

ABC + ABC + ABC + ABC 

CRITICAL SET: 6 5 3 0 

The minimization results suggest immediately: 

(AB + AC + BC)(A +  B + C) = ABC + ABC + ABC 

So that: 

(Z 1)  ≡  (Z 2)(A + B + C) + ABC 

(The preceding symbolism is Boolean: Multiplication stands for AND, and addition (+) stands for OR.  

Note: The ∑π forms are printed by the terminal using this same symbolism.) 

Example 2.5.2. Full adder analysis based on the truth table of threshold functions of its input (Figure 1-3 again). The 
sequence of procedures is illustrated in Figure 2-3. 

 LOGIC 

NUMBER OF X-VARIABLES: 

�: 
 3 

NX = 3 

SYMBOLS FOR X-VARIABLES: (X J), (X J);  J = 1 2 3 

CALL: TABLE, SPACE 

 

 

Figure 2-3  Program Module Sequence for Truth Table of Threshold Functions 
 TABLE 

NUMBER OF FUNCTIONS: 

�: 
 5 

TABLE IS READY FOR FUNCTIONS (Z K) WITH K = 1 2 3 

4 5  

CALL OFFERINGS: FTRUE, FFALSE, FLIST 
 

 FTRUE 

WRITE A SUFFICIENT CONDITION OF  F  IN THE PRESCRIBED 

FORM: 

 F←(ANY LOGICAL APL-MEANINGFUL RELATION WITH VARIABLES 

(X  J), (X  J)) 

EXECUTE IT AND CALL 

EITHER: FSTOR K (WHERE  K  IS THE INDEX OF THE FUNCTION 

(Z  K) 

 OR: FALSE 

 F←(0<(X 1) = (X 2) + (X 3) 
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 FSTOR 1 

CALL: FTRUE, FFALSE, FLIST TO DEFINE THE NEXT 

FUNCTION  (F K) 

WITH K = 2 

Again, a fixed form is prescribed for the condition definition. The variable F represents the Boolean function defined 
by the APL expression. The procedure FSTOR 1 will store it as the first row of the truth table. As a result of the 
response to program TABLE, there are five rows in the table ready to be filled with threshold functions. 

The next threshold function is entered by: 

 FTRUE 

WRITE A SUFFICIENT CONDITION OF F IN THE PRESCRIBED 

FORM: 

  F←(ANY LOGICAL APL-MEANINGFUL RELATION WITH VARIABLES 

(X J), (X J)) 

EXECUTE IT AND CALL 

EITHER: FSTOR K (WHERE K IS THE INDEX OF THE FUNCTION 

(Z K) 

 OR:  FFALSE 

 F←1<(X 1) + (X 2) + (X 3) 

  

 FSTOR 2 

TRUTH TABLE IS READY: 

MAY CALL: FTRUE, FFALSE, FLIST FOR K = 3 ≤ 5 
MAY EXECUTE FX TO PRINT THE TABLE 

Two rows of the truth table have now been filled. A third threshold function will be placed in the third row. 

 FTRUE 

WRITE A SUFFICIENT CONDITION OF F IN THE PRESCRIBED 

FORM: 

  F←(ANY LOGICAL APL-MEANINGFUL RELATION WITH VARIABLES 

(X J), (X J)) 

EXECUTE IT AND CALL 

EITHER: FSTOR K (WHERE K IS THE INDEX OF THE FUNCTION 

(Z K) 

 OR:  FFALSE 

 F←2<(X 1) + (X 2) + (X 3) 

 

 FSTOR 3 

TRUTH TABLE IS READY: 

MAY CALL: FTRUE, FFALSE, FLIST FOR K = 4 ≤ 5 

MAY EXECUTE FX TO PRINT THE TABLE 

To check progress of function generation, let us print the state of the truth table: 

 FX 

0 1 1 1 1 1 1 1 

0 0 0 1 0 1 1 1 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

One of the  output functions of the adder (designated in Figure 1-3 by Y1) will be placed in the next (fourth) row of the 
truth table. 
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 FTRUE 

WRITE A SUFFICIENT CONDITION OF F IN THE PRESCRIBED 

FORM: 

  F←(ANY LOGICAL APL-MEANINGFUL RELATION WITH VARIABLES 

(X J), (X J)) 

EXECUTE IT AND CALL 

EITHER: FSTOR K (WHERE K IS THE INDEX OF THE FUNCTION 

(Z K) 

 OR:  FFALSE 

 F←2<(X 1) + (X 2) + (X 3) 

 

 FSTOR 4 

TRUTH TABLE IS READY: 

MAY CALL: FTRUE, FFALSE, FLIST FOR K = 5 ≤ 5 

MAY EXECUTE FX TO PRINT THE TABLE 

The truth table printout now appears as: 

 FX 

0 1 1 1 1 1 1 1 

0 0 0 1 0 1 1 1 

0 0 0 0 0 0 0 1 

0 1 1 0 1 0 0 1 

0 0 0 0 0 0 0 0 

It is clear that the function of the fourth row can be obtained by Boolean algebraic combination of the functions of 

rows 1, 2, and 3. To prove this, let us put the function:   F ← (Z  3)  v  ( (Z  2)  ^  (Z  1) ) into row 5 of the table: 

 FTRUE 

WRITE A SUFFICIENT CONDITION OF F IN THE PRESCRIBED 

FORM: 

  F←(ANY LOGICAL APL-MEANINGFUL RELATION WITH VARIABLES 

(X J), (X J)) 

EXECUTE IT AND CALL 

EITHER: FSTOR K (WHERE K IS THE INDEX OF THE FUNCTION 

(Z K) 

 OR:  FFALSE 

 F←(Z 3) V  (Z 2) Λ (Z 1) 

 

 FSTOR 5 

TRUTH TABLE IS READY: 

MAY CALL: FTRUE, FFALSE, FLIST FOR K = 6 ≤ 5 

MAY EXECUTE FX TO PRINT THE TABLE 

 FX 

0 1 1 1 1 1 1 1 

0 0 0 1 0 1 1 1 

0 0 0 0 0 0 0 1 

0 1 1 0 1 0 0 1 

0 1 1 0 1 0 0 1 

 



Generation and Processing of Boolean Functions 

   
8 

Note: The second output function of the adder (designated by Y2 in Figure 1-3) happens to be the threshold function 
of the inputs stored in the second row of the table.  

To complete the analysis, the functions are N-minimized: 

 MINIMA (Z 1) 

C + B + A 

CRITICALSET: 4 2 1 

 

  MINIMA (Z 3) 

ABC 

CRITICALSET: 7 

 

 MINIMA (Z 2) 

AB + AC + BC 

CRITICALSET: 4 2 1 

 

 MINIMA (Z 2) 

BC + AC + AB 

CRITICALSET: 6 5 3 

By inspection of the truth table and by using the results of the minimizations, we get: 

(Z 5) = (Z 3) ∨ ((Z 2) ^ (Z 1)) (2.1) 

 =  ABC + (Z 2)(A + B + C) 

 = ABC +DA +DB + DC 

WHERE 

    D = (Z 2) 

 = ~(BC + AC + AB). 

 

The resulting equations are implemented in the two-bit binary full adders (for instance, SC7482). 

Example 2.5.3. Develop the Existence Function of a given sequential circuit, the S-R NOR flip-flop (Figure 1-5, 
Example 1.7). Because of the feedback loop, sequential circuit behavior is expected. The truth table generation 
procedure is inadequate for expressing this behavior. The proper procedure sequence is shown in Figure 2-4. 

 

Figure 2-4  Program Module Sequence of the Existence Function of a Sequential Circuit 
To begin we call: 

 LOGIC 

NUMBER OF X-VARIABLES: 

�: 

 3 

NX = 3 

SYMBOLS FOR X-VARIABLES: (X J), (X J); J = 1, 2, 3 

CALL: TABLE, SPACE 
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 SPACE 

NUMBER OF Y-VARIABLES: 

�: 

 2 

SYMBOLS FOR Y-VARIABLES: (Y K), (Y K); K = 1, 2  

NY = 2 

XY=SPACE SYMBOL:  F[Y; X] 

CALL: EQUATION 

  

 EQUATION 

WRITE THE EQUATION IN THE PRESCRIBED FORM: 

F←F∧(ANY LOGICAL RELATION) 

EXECUTE IT AND CALL: EQUATION, DISCRIMINANT, SOLVE 

The note given in Example 2.5.1 shows that it is unnecessary to condense all constraints into a single APL 
expression, which for this circuit would be: 

F ← F ∧ ((Y 2) = (Y 1) ∧ (X 1)) 

 ∧ ((Y 1) = (Y 2) ∧ (X 2) ∧ (X 3)) 

Clearer expressions are obtained by introducing and executing the simultaneous constraints one after the other, as it 
is done here: 

F ← F ∧ (Y 2) = (Y 1) ∧ (X 1) 

F ← F ∧ (Y 1) = (Y 2) ∧ (X 2) ∧ (X 3) 

Again, remember that APL executes these expressions as soon as they are entered. The existence function is now 
printed by calling: 

 DISCRIMINANT 

HORIZONTAL SCALE: (X J) FOR J = 1 2 3 

VERTICAL SCALE: (Y K) FOR K = 1 2 

 0 0 0 1 0 1 0 1 

 1 1 0 0 0 0 0 0  

 1 0 1 0 1 0 1 0  

 0 0 0 0 0 0 0 0 

Each non-zero of the Existence Function represents a steady state of the circuit. The present circuit has nine steady 
states. 

Note: This Existence Function agrees with Figure 1-2d (Example 7, Chapter 1). 

Example 2.5.4. Design a combinational network specified only by its truth table. The table is given by “decimal 
equivalents”. In that case, the procedure sequence of Figure 2-5 is indicated. The given function has six independent 
variables. 

 LOGIC 

NUMBER OF VARIABLES: 

�: 

 6 

NX = 6 

SYMBOLS FOR X-VARIABLES: (X J), (X J); J = 1 2 3 4 5 6 

CALL: TABLE, SPACE 

 TABLE 

NUMBER OF FUNCTIONS: 

�: 
 1 

TABLE IS READY FOR FUNCTIONS  (Z K) WITH K = 1 

CALL OFFERINGS: FTRUE, FFALSE, FLIST 
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Figure 2-5  Program Module Sequence for Combinatorial Design via Truth Table 
 

Here, we will select FLIST: 

 FLIST 

DECIMAL EQUIVALENTS OF ONES (AT LEAST ONE ITEM): 

�: 
 0 8 14 17 18 19 20 22 24 27 34 36 38 43 46 52 56 

 59 60 61 63 

DECIMAL EQUIVALENTS OF DONT CARES: 

�: 
 2 3 4 5 6 7 10 11 12 23 25 26 28 33 35 37 41 45 49 

53 54 55 57 58 62 

CALL: FSTOR  K  (WHERE K IS WELL SPECIFIED) 

 

 FSTOR 1 

CALL:  FTRUE, FFALSE, FLIST TO DEFINE THE NEXT 

FUNCTION  (F K) 

 WITH K = 2 

The given Boolean function is now stored as (Z  1), and we want to inspect its Marquand chart. To print that chart, we 
call: 

 (Z 1) CHART 8 

HORIZONTAL SCALE: (X J) FOR J = 1 2 3 

  VERTICAL SCALE: (X J) FOR J = 4 5 6 

0 1 2 2 2 2 2 2  

1 0 2 2 2 0 1 0 

0 1 1 1 1 0 1 2 

1 2 2 1 2 0 0 0  

0 2 1 2 1 2 1 0 

0 1 0 1 0 2 1 0 

0 2 0 0 1 2 2 2 

1 2 2 1 1 1 2 1 

Note: The procedure is called with two arguments:  

• on the left side of the procedure name is the symbol of the function to be charted;  

• on the right side is the number of columns of the chart, which must be a power of two (for triadic charts, a 
power of three). 

The chart is filled with integers from the set (0, 1, 2) with the following meanings: 

• 0 means FALSE 

• 1 means TRUE 

• And 2 means UNSPECIFIED (DON’T Care) 
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To design a two-level AND-OR (two-level NAND) combinational network, we first program the N-minimization of  
(Z  1): 

 MINIMA (Z 1) 

ABCE + BCDE + ACDF + ACD + DEF + BCF + ACDF + ACEF 

CRITICAL SET: 46 34 8 36 63 18 17 43 

That calls for eight gates at the first level and an 8-input fan-in at the second level. The first level gates need 29 
inputs. Inversion of B is not necessary. The maximum number of inputs per gate is 4. 

To design a two-level OR-AND (two-level NOR) combinational circuit for the given function, we N-minimize the 
complement of (Z  1) of the function (Z  1) and develop an N-minimal π∑ form by inverting the form obtained for  
(Z  1): 

 MINIMA (Z 1) 

ABCE + ACE + BDEF + ABCD + CDEF + CEF + ACEF   

CRITICAL SET: 16 47 44 42 50 31 9 

That calls for seven gates at the first level and a 7-input fan-in at the second level. The first level gates need only 26 
inputs. It is clear that this solution is simpler. Note:   

(Z 1) = (A+B+C+D)(A+C+E)(B+D+E+F) 

   (A+B+C+D)(C+D+E+F)(C+E+F)(A+D+E+F) 

The low value of the execution time connected with the MINIMA procedure is due to the fact that the ∑π extension 
algorithm avoids the listing of all prime implicants of the given function, which is time-consuming. To illustrate this 
point, the sum of all prime implicants is printed out by calling: 

 PRIMIMPLICANT (Z 1) 

ALGEBRAIC FORM OF THE COMPLEMENTARY FUNCTION: 

BCDEF + ABDEF + ACDEF + ABCEF + BCDEF + ABCEF + ABDEF + 

ABCD + ACDF 

CRITIAL SET: 51 44 42 39 30 21 9 16 15 

SUM OF ALL PRIMIMPLICANTS: 

ABCD + ACD + ABCD + ABCE + ABCE + ABDE + CDE + BCDE + 

ABCE + BCDF + CEF + DEF + ACEF + ABCF + BCF + ABDF + 

ACDF + ABCE + ABDE + ABDE + BCDE + ACDE + BCDE + ABF + 

ABCF + ACDF + BDF + ACDF + ACEF + ABEF + ACEF + ADEF + 

ADEF + CDEF 

 

The function (Z  1) has 34 prime implicants. Only eight of them were used to form an N-minimal ∑π form. This is 
wasteful. The procedure MINIMA developed prime implicants covering points belonging to a critical set: 

{46, 34, 8, 36, 63, 18, 17, 43} 

whose elements are mutually term exclusive (that is, no term implicant of the given function exists that covers any 
pair of elements of that set) and which has the property to include the maximum number of mutually term exclusive 
elements. 

Note: The algebraic form of the complementary function covers all zeros of the given function without being N-
minimal. The N-minimal ∑π form of (Z  1) is much simpler due to DON’T CARES, which are not considered for the 
algebraic form of the printout. 

Example 2.5.5. When the function is very simple and when all we want to do is minimize its algebraic form, is is 
possible to develop its APL representation without beginning with LOGIC. For instance, a Boolean function FX is 
specified by decimal equivalents {3, 5, 6}, and FX is unspecified for {1, 2, 4, 7}. The APL vector will be a string of 
eight integers (it is obvious that the function has three independent variables) taken from the set {0, 1, 2}: 

• 0 means FALSE 

• 1 means TRUE 

• and 2 means UNSPECIFIED (DON’T CARE).  
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At the APL terminal, the function can be developed by: 

    FX ← 0 2 2 1 2 1 1 2 

 FALSE → 0 

  TRUE →       3   5 6 

UNSPECIFIED →  1 2    4     7 

The function can thus be minimized immediately as follows: 

FX ←0 2 2 1 2 1 1 2 

 

 MINIMA FX 

CYCLE DISSOLOTION 

C + B 

CRITICAL SET: 6 3 

The given function FX was “cyclic”. In that case, the procedure MINIMA dissolves the cycle by relaxing the condition 
leading to the minimal count of literals in the resulting ∑π form. The number of terms of that form remains minimal. 
However, the critical set printout can be distorted.  

For instance, in the present case, it can be shown that no critical set exists that has two elements. The set {6, 3} is 
not “critical” because the term B covers both elements 6 and 3.  

On the other hand, all N-minimal ∑π forms of FX: C + B, B + A, and A + B, have two terms more than the number of 
elements in critical sets {6}, {3}, and {5}, which possess one element only. The function FX is labeled “abnormal” 
because the N-minimal ∑π form always has more terms then the count of elements in its critical set. 

To meet an abnormal Boolean function in actual computer application is highly improbable. Cyclic functions usually 
happen to be normal. For instance, the function treated in the following is cyclic, but normal: 

  LOGIC 

NUMBER OF VARIABLES: 

�: 

 4 

NX = 4 

SYMBOLS FOR X-VARIABLES: (X J), (X J); J = 1 2 3 4 

CALL: TABLE, SPACE 

  

 TABLE 

NUMBER OF FUNCTIONS: 

�: 
 1 

TABLE IS READY FOR FUNCTIONS  (Z K) WITH K = 1 

CALL OFFERINGS: FTRUE, FFALSE, FLIST 

 

 FLIST 

DECIMAL EQUIVALENTS OF ONES (AT LEAST ONE ITEM): 

�: 
 0 1 3 4 6 7 9 10 11 12 13 14 

DECIMAL EQUIVALENTS OF DONT CARES: 

�: 
 10 

CALL: FSTOR  K  (WHERE K IS WELL SPECIFIED) 

 

 FSTOR 1 

CALL:  FTRUE, FFALSE, FLIST TO DEFINE THE NEXT 

FUNCTION  (F K) 

 WITH K = 2 
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 (Z 1) CHART 4 

HORIZONTAL SCALE: (X J) FOR J = 1 2 

  VERTICAL SCALE: REMAINING VARIABLES 

  1 1 0 1 

  1 0 1 1 

  0 1 1 1 

  1 1 1 0 

 

 MINIMA (Z 1) 

CYCLE DISSOLUTION 

BCD  +  AC  + ABD  +  BCD  +  ABD 

CRITICAL SET: 13 9 10 7 0 

Note: “Cycle dissolution” means that the critical set may be faulty. Here, minterms 13 and 9 are mutually term 
inclusive (both being covered by ABD), which is against the ruling that each pair of elements in the critical set must 
be mutually term exclusive. The resulting form is always correctly N-minimal. The minimal count of literals is not 
warranted. To get the best N-minimal ∑π forms of cyclic functions, use the program block called OPTIMA.  

Example 2.5.6. The procedure X NEWORDER F is used to interchange the indexing of variables (i.e., to change the 
charting pattern of F). This procedure is used as a subroutine in BUIDIF, generating the Boolean difference of F. The 
dummy variable X is used to express the reordering law; it has the form of a vector composed from the elements of 
the set {1, 2, 3, …} containing one element for each variable (X  j), j = 1, 2, 3, … of the function F.  

Note: These variables are represented in the MINIMA printout as A, B, C, …. For instance: 

 
Is well-formed when F is a function of four variables (X  j), j = 1, 2, 3, 4 (represented by A, B, C, and D in the 
MINIMA printouts).  

To describe the reordering law, the following sketch is useful: 

Original order 1 2 3 4 = J  old A B C D 

X-symbol 2 3 4 1 2 3 4 1 

New order 4 1 2 3 = J  new D A B C 

The variable (j  1) of the new order represents the variable (j  4) of the old. IN the printout, printing of A will be 
replaced by the printing of D (note that new D stands below the old A in the preceding sketch. 

To illustrate, start with: 

F1←1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 

and do 

 F1 CHART 4 

HORIZONTAL SCALE: (X J) FOR J = 1 2 

  VERTICAL SCALE: (X J) FOR J = 3 4 

  1 0 1 0 

  1 0 1 0 

  0 1 0 1 

  1 1 0 1 

To print the Marquand chart of F1. In this chart, the horizontal variables are A and B; the vertical variables are  
C and D.  

The MINIMA printout gives: 

 MINIMA F1 

AD  +  ABC  + AD 

CRITICAL SET: 15  12  6 
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The reordering procedure, called by: 

F4←2 3 4 1 NEWORDER F1 

Produces the function F4, whose variables are reordered. 

To show the result of the reordering operation, call: 

 MINIMA F4 

CD  +  ABD  + CD 

CRITICAL SET: 15  6  3 

Note: The printout of MINIMA F1 was transformed into that of MINIMA F4 according to the sketch discussed 
previously: 

AD transforms into DC, ABC into DAB, and AD into DC. 

Second illustration: 

F4←2 1 3 4 NEWORDER F1 

This time, the variables A and B were mutually interchanged, while C and D were left unchanged. The Marquand 
chart after this reordering is produced by: 

 F4 CHART 4 

HORIZONTAL SCALE: (X J) FOR J = 1 2 

  VERTICAL SCALE: (X J) FOR J = 3 4 

  1 1 0 0 

  1 1 0 0 

  0 0 1 1 

  1 0 1 1 

Comparison of this chart with the chart of the original function F1 shown previously shows that the column 
corresponding to BA was interchanged with the column belonging to BA.  

Finally, note the result of: 

 MINIMA F4 

BD  +  ABC  + BD 

CRITICAL SET: 15  12  5 

Example 2.5.7. Find the Boolean difference of a given function F1 (from example 2.5.6) in relation to each of its 
variables (X  k), k = 1, 2, 3, 4. A procedure is available to solve this problem. By calling: 

R ← K BUILDIF F 

a function of all variables is formed. This function is true for a given configuration of all variable validities if and only if 
the value of the function F varies with the variation of the variable (X  k). 

To illustrate, let us call: 

F4 ←1 BULDIF F1 

And express F4 (the difference for (X  1) ) algebraically by calling: 

 MINIMA F4 

B  +  C  +  D 

CRITICAL SET: 15 9 5 

In the sense of the definition, the function F1 must change its value if and only if: 

F4  = 1  = B + C + D 

To check it, we recall that: 

F1 = AD + ABC  + AD 
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Test 1: B = 1, C, D = (any) => F4 = 1. 

   Then F1 = AD + AD ≡ (A = D). 
      Conclusion: F1 must change with 

   A for any D. 

 

Test 2: D = 0, B, C = (any) => F4 = 1. 

   Then F1 = ABC + A ≡ A, which 

   Changes with A. 

 

Test 3: BCD = 1 => F4 = 0. 

   Then B = C = D = 0, 

   and F1 = A + A = 1    

   So that F1 does not change with A. 

Another illustration: 

 F4←4 BUILDIF F 
 

 MINIMA F4 

B  +  A  +  C 

CRITICAL SET: 14 13 8 

 

 F4 CHART 4 

HORIZONTAL SCALE: (X J) FOR J = 1 2 

  VERTICAL SCALE: (X J) FOR J = 3 4 

  1 1 1 1 

  0 1 1 1 

  1 1 1 1 

  0 1 1 1 

The chart shows that the value of F1 changes with (X  4) (or D) in every window of the chart except two (those filled 
with zeros). 
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3 Chapter 3  The APL Program “System” 
This chapter is a collection of program modules, called functions in APL. Together they compromise a program set 
know as SYSTEM. These modules are the ones referenced throughout Chapter 2. 

The serious student of APL will wish to study these in depth. The reader who is only interested in their application to 
circuit design may skip this chapter. 

These modules have been developed by Dr. Svoboda over the past several years and are successfully used in his 
popular Logic Circuits Laboratory course at the University of California, Los Angeles.1 The user, either student or 
scientist, needs only a rudimentary introduction to APL to be able to apply SYSTEM to design problems. 

System is used to transform problem specifications into a set of Boolean functions defined by a truth table. It is the 
basic starting program for study as it will provide the Existence Function of the system of Boolean functions and is the 
program which provides for minimization and logical relational analysis. 

 

 

  

                                                           

1 This lab is no longer available; Svoboda retired in the 1980s and died shortly thereafter.  
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4 Chapter 4  Minimization and Optimization 

4.1 Introduction 

To perform minimization and optimization, the program module sequence of Figure 4-1 applies.  

 

Figure 4-1  Program Module Sequence for Minimization and Optimization 
 

To begin, we type: 

)LOAD <library number> OPTIMA 

DESIGN 

The interaction is demonstrated in the following examples. 
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4.2 Examples 

Example 4.2.1. Select a Boolean function of 5 variables at random and minimize it Σ∏ form. To develop such a 
function, we call: 

 EXAMPLE 
TYPE NUMBER OF VARIABLES: 
�: 
 5 
MINS→→→ 0  2  5  7  12  13  16  19  20  22  26  27  29  30 
DONTS→→→3  8  11  15  23  25 

The function is specified by decimal equivalents. APL vectors MINS and DONTS are mutually exclusive, and they 
can be used in the program that follows. (MINS represent points where the function is specified as true). 

We are ready to call: 

 DESIGN 
NUMBER OF INDEPENDENT VARIABLES OF GIVEN BOOLEAN FUNCTIONS: 
�: 
 5 
THEIR SYMBOLS:  ABCDE 
SYMBOLISN EXPLANTATION: 
OK MEANS: NO MISTAKE 
FLT MEANS: FAULTY TYPING, REQUEST FOR RETYPING 
ADD  MEANS: REQUEST FOR ADDITIONAL DATA INSERTION 

This explanatory text is intended for students. It is easy to cancel it in the program. In the examples that follow, we 
will not repeat the printout of explanatory comments. Note that the number of outputs is equal to 1 when we minimize 
the Σ∏ form of a given function. 

TYPE THE NUMBER OF OUTPUTS. (BY TYPING:  1 THE PROCEDURE  
IS REDUCED TO AN N-MINIMIZATION OF A SINGLE GIVEN  
FUNCTION.) 
�: 
 1 
TYPE-IN DECIMAL EQUIVALENTS OF TRUE MINTERMS  
OR THE SYMBOL OF THE CORRESPONDING VECTOR. 
�: 
 MINS 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
TYPE IN UNSPECIFIED MINTERMS (IF NONE, TYPE: NONE). 
�: 
 DONTS 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
WEIGHT TABLE: 
 
W = 2 FOR MINS: 2  5  12  16  20  26  29  30 
W = 3 FOR MINS: 0  19  22 
W = 4 FOR MINS: 7  13  27 

Marquand charts will be used.  

Consult the weight table to estimate the difficulty of the problem. For a function of more than 6 variables which 
happens to have only a small count of low weight minterms (W = 0, 1, 2, 3), it is advisable to begin with the lowest 
weight value found in the table as a limit set for the execution. This limit can be increased later one by one when it 
becomes clear that the generation of new terms is adequate and the corresponding execution time is acceptable. 

SATE OF THE CRITICAL SET: 
SET A LIMIT FOR W OR TERMINATE BY TYPING:  0 
�: 
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The weight W has a very simple meaning. It is equivalent to the count of those non-zeros of the given function, which 
are at a unit logical distance from a minterm implicant. 

For instance, W = 2 for MIN identified with 5 means: There are exactly two non-zeros of the function at unit logical 
distance from the MINterm 5 = (00101)2 ≡ EDBCA:  

7 = (00111)2 and 13 = (01101)2, (both belonging to MINS). 

W=4 for the MINterm 7 = (00111)2  ≡ EDBCA means that there are four non-zeros: 5 = (00101)2, a MIN, and  
3 = (00011)2, 15 = (01111)2, and 23 = (10111)2, all members of DONTS. 

For this example, the limit for W is to be set to 4, so we type: 

PRESENT STATE 
1  0  1  *  0  1  0  1 
*  0  0  *  1  1  0  * 
1  0  0  1  1  0  1  * 
0  *  1  1  0  1  1  0 
 
N-MINIMAL FORM: 

A CDE  2 

A C E  5 

AB DE  16 

ABCD  29 

ABC  19 

AB DE  26 

ABC E  22 

 

The N-minimal Σ∏ form of the given incompletely specified function is: 

 
The corresponding critical set is presented below the minimal form. Any pair of MINS taken from this set has 
components that are mutually term exclusive (MTE). This means that no implicant T  => f of the given function 
exists that covers both components of any pair.  

(For functions with a cycle, i.e., cyclic functions, the printed set is not always "critical"!) The element of the critical 
set printed here below a term is covered by that term exclusively.  

For instance, MINterm 19 is covered by ABC and not by any other term of the Σ∏ form. 

Exercise: Sketch the two-level NAND network defined by the Σ∏ form. 

 

Example 4.2.2. Design a two-level NOR network generating the function defined in Example 4.2.1. 

Procedure: Develop an N-minimal Σ∏ form for the complement f of that function and apply DeMorgan's rules to 
obtain the minimal ∏Σ form of f. Note: DONTS remain unchanged and the f must be true where f was specified as 
false. 

MINS1←1  4  6  9  10  14  17  18  21  24  28  31 
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We again call DESIGN (the explanatory texts are not reproduced here): 

 DESIGN 
NUMBER OF INDEPENDENT VARIABLES OF GIVEN BOOLEAN FUNCTIONS: 
�: 
 5 
THEIR SYMBOLS:   ABCDE 
 
TYPE THE NUMBER OF OUTPUTS. (BY TYPING:  1  THE PROCEDURE 
IS REDUCED TO AN N-MINIMIZATION OF A SINGLE GIVEN  
FUNCTION.) 
�: 
 1 
TYPE-IN DECIMAL EQUIVALENTS OF TRUE MINTERMS  
OR THE SYMBOL OF THE CORRESPONDING VECTOR. 
�: 
 MINS1 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
TYPE IN UNSPECIFIED MINTERMS (IF NONE, TYPE: NONE). 
�: 
 DONTS 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
WEIGHT TABLE: 
 
W = 0  FOR MINS: 18 
W = 1  FOR MINS: 4  28 
W = 2  FOR MINS: 6  21  31 
W = 3  FOR MINS: 1  101114  17  24 
W = 4  FOR MINS 9 
 
STATE OF THE CRITICAL SET: 
 
SET A LIMIT FOR W OR TERMINATE BY TYPING:  0 
�: 
 4 
PRESENT STATE 
0  1  0  *  1  0  1  0 
*  1  1  *  0  0  1  * 
0  1  1  0  0  1  0  * 
1  *  0  0  1  0  0  1 
 
N-MINIMAL FORM: 
ABCDE  18 
A CDE  4 
AB DE  28 
ABCD  31 
ABC  1 
 B DE  10 
 

The N-minimal ΣΠ form of f is 
ABCDE + ACDE + ABDE + ABDE + ABCD + ABC + BDE 

(  1            28,    21,    31,    1,   10  ) 

and the ΠΣ of f (by DeMorgan’s rules) is 
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f = (A+B+C+D+E)(A+C+D+E)(A+B+D+E)(A+B+D+E)(A+B+C+D)(A+B+C)(B+D+E) 

Exercise: Sketch the corresponding two-level NOR circuit. Discuss which of the two circuits (two-level NAND or two-
level NOR) is more practical. 

Example 4.2.3. Design a full adder as a combinational circuit with multiple outputs (see Figure 1-3). The output 
functions are: 

(Z  1) ≡ {1, 2, 4, 7} 

(Z  2) ≡ {3, 5, 6, 7} 

The procedure again starts with: 

 DESIGN 
NUMBER OF INDEPENDENT VARIABLES OF GIVEN BOOLEAN FUNCTIONS: 
�: 
 3 
THEIR SYMBOLS:  ABC 

 
TYPE THE NUMBER OF OUTPUTS. (BY TYPING: 1 THE PROCEDURE 
IS REDUCED TO AN N-MINIMIZATION OF A SINGLE GIVEN  
FUNCTION.) 
�: 
 2 
DEFINE FUNCTIONS BY DECIMAL EQUIVALENTS.  TYPE: NONE FOR 
EMPTY SETS. 
FUNCTION LABELED 1 IS TRUE AT: 
�: 
 1  2  4  7 
 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
 
PRESENT STATE: 
* * * * * * * *   | 
0 1 1 0 1 0 0 1   | 
0 0 0 1 0 1 1 1   | mosaic function 
0 0 0 0 0 0 0 0   | 
 
N-MIMIMAL FORM 
ABC E  9 
ABC E  10 
ABC E  12 
ABC  15 
AB D  19 
A CD  21 
 BCD  22 

 

You may call SCHEMATIC. The resulting graph describes the circuit under the following rules: 

• Horizontally Aligned Quads (----�----) represent the inputs of an AND-gate 

• Horizontally aligned circles (---o----) represent the input of an OR-gate whose output variable is designated 
by a literal printed above the circular marker (o). 

The purpose of the procedure up to now was to develop a critical set of the Mosaic Function. This critical set is a very 
important factor of the procedure that develops the two-level circuit with the minimum of gates and, within this 
condition, with the minimum number of gate inputs.  

The development of the circuit from the S-minimal form is understood after a comparison between the N-minimal form 
(see above) and the circuit printed by the terminal: 
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 SCHEMATIC 
FIRST APPROXIMATION OF THE OPTIMAL NETWORK” 
 A     A     B     B    C    C    D      E   
-|-----�-----�-----|----�----|----O------|--- 
-�-----|-----|-----�----�----|----O------|--- 
-�-----|-----�-----|----|----�----O------|--- 
-|-----�-----|-----�----|----�----O------O--- 
-|-----�-----|-----�----|----|----|------O--- 
-|-----�-----|-----|----|----�----|------O--- 
-|-----|-----|-----�----|----�----|------O--- 
 
S-VALUE OF THE CIRCUIT:  12 
CALL OPTIMUM 
 
 OPTIMUM 
S-VALUE HAS BEEN REDUCED TO:  11 
ABC E  9 
ABC E  10 
ABC E  12 
ABC E  15 
AB D  19 
A CD  21 
 BCD  22 
 
AND THE CIRCUIT TO: 
A     A     B     B    C    C    D      E   
-|-----�-----�-----|----�----|----O------|--- 
-�-----|-----|-----�----�----|----O------|--- 
-�-----|-----�-----|----|----�----O------|--- 
-|-----�-----|-----�----|----�----O------|--- 
-|-----�-----|-----�----|----|----|------O--- 
-|-----�-----|-----|----|----�----|------O--- 
-|-----|-----|-----�----|----�----|------O--- 
 
S-VALUE OF THE CIRCUIT:  11 
TYPE: GO  IF YOU WANT TO CONTINUE.  IF NOT, TYPE: STOP. 
�: 
 GO 
ABSOLUTE OPTIMUM REACHED. 

 

By calling OPTIMUM, the S-minimization is started. To prevent undesirable cost of execution time, the circuit is 
reprinted each time the S-value drops by one unit. Calling G0 can be continued as long as desirable.  

When the terminal prints ABSOLUTE MAXIMUM REACHED, the provably best solution has been reached. 
(Exception: When one or more of the functions has a single literal implicant such as A, A, B, … , the problem must be 
solved twice, once in the normal way described previously and the second time with A, A, B, … used as the output 
OR-gate input and with single literal implicants.) 

Example 4.2.4. Design a full adder with outputs (Z 1), (Z 2) (the second output is complimented!). This time, we 
reproduce the printout without any comments:  

 
 DESIGN 
NUMBER OF INDEPENDENT VARIABLES OF GIVEN BOOLEAN FUNCTIONS: 
�: 
 3 
THEIR SYMBOLS:  ABC 
 
TYPE THE NUMBER OF OUTPUTS. (BY TYPING:  1 THE PROCEDURE 
IS REDUCED TO AN N-MINIMIZATION OF A SINGLE GIVEN 
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FUNCTION.) 
�: 
 2 
DEFINE FUNCTIONS BY DECIMAL EQUIVALENTS. TYPE:  NONE FOR 
EMPTY SETS. 
FUNCTION LABELED 1 IS TRUE AT: 
�: 
 1 2 4 7           ----Function “D” 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
FUNCTION NUMBER 1 IS UNSPECIFIED AT: 
�: 
 NONE 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
FUNCTION LABELED 2 IS TRUE AT: 
TYPE: OK OR FLT OR ADD: 
�: 
 0 1 2 4  ----Function “E” 
 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
FUNCTION NUMBER 2 IS UNSPECIFIED AT: 
�: 
 NONE 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
WEIGHT TABLE: 
W = 1 FOR MINS: 15 
W = 2 FOR MINS: 9 10 12 
W = 3 FOR MINS: 17 18 20 
W = 4 FOR MINS: 16 
 
STATE OF THE CRITICAL SET: 
 
SET A LIMIT FOR W OR TERMINATE BY TYPING: 0 
�: 
 4 
PRESENT STATE: 
* * * * * * * *   - E D 
0 1 1 0 1 0 0 1   - E D 
1 1 1 0 1 0 0 0   - E D 
0 * * 0 * 0 0 0   - E D 

Note: The Mosaic function composed for this purpose has: 

• The row ED filled with DON’T CAREs (always). 

• The row ED filled with the function D 

• The row ED filled with the function E 

• The row ED filled with DON’T CAREs wherever the product ED is NOT zero. 

In general, for more outputs (for instance, four: D, E, F, and G), the functions are filled only into rows with a single 
non-complemented variable: 
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Contains:     

 

Any other row contains DON’T CAREs only. For instance, the row GFED contains a DON’T CARE whenever the 
product of functions G and E is not equal to zero. 

 

N-MINIMAL FORM: 

ABC E 15 

ABC 9 

ABC 10 

ABC 12 

AB D 16 

 

You may call SCHEMATIC. The resulting graph describes the circuit under the following rules: 

• Horizontally Aligned Quads (----∏----) represent the inputs of an AND-gate 

• Horizontally aligned circles (---- o----) represent the input of an OR-gate whose output variable is designated 
by a literal printed above the circular marker (o). 

SCHEMATIC 
FIRST APPROXIMATION OF THE OPTIMAL NETWORK: 
 A     A     B     B     C     C        D        E 
-|-----�-----|----�-----|-----�---------O-------|-- 
-|-----�-----�----|-----|-----|---------O-------O-- 
-�-----|-----|----�-----|-----|---------O-------O-- 
-�-----|-----�----|-----|-----�---------O-------O-- 
-�-----|-----�----|-----|-----|---------|-------O-- 
S-VALUE OF THE CIRCUIT: 12 
CALL OPTIMUM. 
 
 OPTIMUM 
S-VALUE HAS BEEN REDUCED TO: 11 
ABC E 15 
ABC 9 
ABC 10 
ABC E 12 
AB D 16 
AND THE CIRCUIT TO: 
A     A     B     B     C     C        D        E 
-|-----�-----|----�-----|-----�---------O-------|-- 
-|-----�-----�----|-----�-----|---------O-------O-- 
-�-----|-----|----�-----�-----|---------O-------O-- 
-�-----|-----�----|-----|-----�---------O-------|-- 
-�-----|-----�----|-----|-----|---------|-------O-- 
S-VALUE OF THE CIRCUIT: 11 
TYPE: GO IF YOU WANT TO CONTINUE. IF NOT, TYPE: STOP. 
�: 
 GO 
ABSOLUTE OPTIMUM REACHED. 
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The resulting circuit (with (Z 2) as output) is simpler than the circuit obtained in Example 4.2.3. It is used in integrated 
circuits. 

 

Example 4.2.5. The Boolean function: MINS = 1, 2, 7; DON’Ts – 0, 3, 5, 6, is at the same time CYCLIC and 
ABNORMAL. Any critical set contains one element at the maximum, because the elements of pairs: (1, 2), (1, 7), (2, 
7) are MUTUALLY TERM INCLUSIVE (MTI).  

The maximal number of elements in a critical set is M = 1. The minimal number of terms a ΣΠ -from, however, is N = 
2, so N > M, a property called ABNORMAL. We are interested in the result of the minimization procedure DESIGN 
applied to that function. 

 DESIGN 
NUMBER OF INDEPENDENT VARIABLES OF GIVEN BOOLENA FUNCTIONS: 
�: 
 3 
THEIR SYMBOLS:  ABC 
TYPE THE NUMBER OF OUTPUTS. (BY TYPING: 1 THE PROCEDURE 
IS REDUCED TO AN N-MINIMIZATION OF A SINGLE GIVEN 
FUNCTION.) 
�: 
 1 
TYPE-IN DECIMAL EQUIVALENTS OF TRUE MINTERMS 
OR THE SYMBOL OF THE CORRESPONDING VECTOR. 
�: 
 1 2 7 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
TYPE IN UNSPECIFIED MINTERMS (IF NONE, TYPE : NONE). 
�: 
 OK 
WEIGHT TABLE: 
 
W = 3 FOR MINS: 1 2 7 
 
STATE OF THE CRITICAL SET: 
SET A LIMIT FOR W OR TERMINATE BY TYPING: 0 
�: 
 3 
PRESENT STATE: 
* 1 1 * 
0 * * 1 
 
CYCLIC. PARTIAL FORM: 
RIGHT-HAND-SIDE BORDER INTEGERS 
BELONG TO A CRITICAL SET. 
RESIDUAL FUNCTION: 
* 1 1 * 
0 * * 1 
 
TO CONTINUE CALL BRANCH 

We were informed that the case is CYCLIC and that the minimization process would not be started (PARTIAL FORM 
is empty). The residual function is identical to the function we started with. Branching is done in the usual way: 

 BRANCH 

BRANCHING POINT CHOSEN IS: 1 
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TABLE OF BRANCHING TERMS: 
A        1 
  C      2 
INTEGERS AT THE RIGHT-HAND-SIDE ARE SO CALLED: ROW NUMBERS. 
CALL TRIAL. 
 
 TRIAL 
SELECT BRANCHING TERM BY TYPING ITS ROW NUMBER. 
�: 
 1 
BRANCHING TERM: 
A      1 

 
COMPLETE COVERAGE. RESULTING FORM: 
A      1 
 B     2 

 
RIGHT-HAND-SIDE BORDERS INTEGERS 
BELONG TO A CRITICAL SET. 
LITERALS TOTAL: 2 
MAY CALL TRIAL AGAIN. 

Because the case is cyclic, the integers printed on the right-hand side border do not represent a critical set! The N-
minimal form, however, is correct. By calling TRIAL again, we can form all branches and compare them: 

 TRIAL 

SELECT BRANCHING TERM BY TYPING ITS ROW NUMBER. 

�: 

 2 

BRANCHING TERM: 

  C    1 

COMPLETE COVERAGE. RESULTING FORM: 

  C    1 

A      7 
 

RIGHT-HAND-SIDE BORDERS INTEGERS 
BELONG TO A CRITICAL SET. 
LITERALS TOTAL: 2 
MAY CALL TRIAL AGAIN. 

 

Remarks: The cycle is ODD: A, B, C are three existing “primimplicants” forming that cycle. The function is abnormal 
(M = 1, N = 2). The N-minimal forms A + B, A + C are correct. 

 

Example 4.2.6. The completely specified function: MINS = 0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14 is highly cyclic but 
normal. Minimize with DESIGN: 

 DESIGN 
NUMBER OF INDEPENDENT VARIABLES OF GIVEN BOOLENA FUNCTIONS: 
�: 
 4 
THEIR SYMBOLS:  ABCD 
TYPE THE NUMBER OF OUTPUTS. (BY TYPING: 1 THE PROCEDURE 
IS REDUCED TO AN N-MINIMIZATION OF A SINGLE GIVEN 
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FUNCTION.) 
�: 
 1 
TYPE-IN DECIMAL EQUIVALENTS OF TRUE MINTERMS 
OR THE SYMBOL OF THE CORRESPONDING VECTOR. 
�: 
 0 1 3 4 6 7 9 10 11 12 13 14 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
TYPE IN UNSPECIFIED MINTERMS (IF NONE, TYPE : NONE). 
�: 
 NONE 
TYPE: OK OR FLT OR ADD: 
�: 
 OK 
 
WEIGHT TABLE: 
 
W = 2 FOR MINS: 0 7 10 13 
W = 3 FOR MINS: 1 3 4 6 9 11 12 14 
 
STATE OF THE CRITICAL SET: 
SET A LIMIT FOR W OR TERMINATE BY TYPING: 0 
�: 
 3 
PRESENT STATE: 
1 1 0 1 
1 0 1 1 
0 1 1 1 
1 1 1 0 
 
CYCLIC. PARTIAL FORM: 
RIGHT-HAND-SIDE BORDER INTEGERS 
BELONG TO A CRITICAL SET. 
RESIDUAL FUNCTION: 
1 1 0 1 
1 0 1 1 
0 1 1 1  
1 1 1 0 
 
TO CONTINUE CALL BRANCH 
 
 BRANCH 
BRANCHIONG POINT CHOSENIS: 0 
TABLE OF BRANCHING TERMS: 
AB D 1 
 BCD 2 
 
INTEGERS AT THE RIGHT-HAND-SIDE ARE SO CALLED: ROW NUMBERS. 
CALL TRIAL. 
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 TRIAL 
SELECT BRANCHING TERM BY TYPING ITS ROW NUMBER. 
�: 
 1 
BRANCHING TERM: 
AB D 0 
  
COMPLETE COVERAGE. RESULTING FORM: 
AB D 0 | 
A C  1 | 
 BCD 7      |  --- NOT A CRITICAL SET 
AB D 10 | 
 BCD 13 | 
 
RIGHT-HAND-SIDE BORDER INTEGERS 
BELONG TO A CRITICAL SET. 
LITERALS TOTAL: 14 
MAY CALL TIRAL AGAIN. 
 
 TRIAL 
SELECT BRANCHING TERM BY TYPING ITS ROW NUMBER. 
�: 
 2 
BRANCHING TERM: 
 BCD 0 
  
COMPLETE COVERAGE. RESULTING FORM: 
 BCD 0 | 
A C  4 | 
AB D 7      |  ---  CRITICAL SET 
 BCD 10 | 
AB D 13 | 
 
RIGHT-HAND-SIDE BORDER INTEGERS 
BELONG TO A CRITICAL SET. 
LITERALS TOTAL: 14 
MAY CALL TIRAL AGAIN. 
 

 

Remark: The program OPTIMA is well prepared to handle Boolean Functions with one cycle only. When faced with 
functions possessing multiple cycles, use the program SYSTEM. 
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5 Chapter 5   The APL Program "OPTIMA" 
This chapter consists of the listings of the APL functions which comprise the program OPTIMA. OPTIMA is used for 
minimization of a Boolean function to the minimal or the optimum EIT or ITE form. 

It is used for combinational circuits of single or multiple outputs. 

OPTIMA is based upon the previously-published theorems of mutual term exclusivity. 
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 ’ Comment 

[1] ‘THIS PROGRAM IS USED FOR COMPUTER AIDED DERSIGN 
 OF SINGLE AND MULTIPLE OUTPUT COMBINATIONAL CIRCUITS. 
 TO BEGIN CALL: DESIGN.’ 

[2] ’’ 

[3] ’REFERENCE: SVOBODA A., THE CONCEPT OF TERM  
 EXCLUSIVENESS AND ITS EFFECT ON THE THEORY OF  
 BOOLEAN FUNCTIONS. JOURNAL OF THE ASSOCIATION 
 FOR COMPUTING MACHINERY, VOL. 22, NO. 3, JULY 1975. 

 DE VRIES AND SVOBODA, MULTIPLE OUTPUT  
 MINIMIZATION WITH MOSAICS OF BOOLEAN FUNCTIONS,  
 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-24, NO. 8, 
 AUG. 75. ’ 

 ’ 
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7 Chapter 7    The APL Program “BOOL” 

 
This chapter consists of the listings of the APL functions which comprise the program BOOL. 

This concludes the APL program Listings for the set of computer-assisted design programs developed by Dr. 
Svoboda. 
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Chapter 8 

8 Minimization Techniques 

8.1 Introduction 

The emphasis is on clean, irredundant, minimal designs has been dramatically affected by the evolution of LSI [VLSI] 
technology. There are instances where a minimal implementation costs more in board space [or die size] or design 
time without providing testing, cost, or execution speed advantages. An understanding of minimization techniques is 
still a requirement for the LSI [VLSI] designer, however, as much of the logical thought discipline is necessary for 
current micro-system designs.  

For the chip designer, circuit cost can be shown to be linearly related to chip area, which in turn is a function (all other 
variables remaining fixed) of the number of gates and the number of connections. The emphasis of minimization 
would be gate count reduction for TTL, and ECL (bipolar LSI) since their gates occupy a larger chip area then 
connections; for MOS LSI, the emphasis of the minimization would be connection length or connection count (the 
connection length is related to the number of gates and to the number of connections). 

Although highly simplified, expressing circuit cost as a function of the number of gates and the number of connections 
gives a reasonable approximation.1 

For the circuit board designer, cost can be shown to be related to the number of packages and the number of 
connections. For high-speed designs, the emphasis of minimization would be connection length, which is a function 
of the number of gates and the number of connections. For densely packed boards, ,the emphasis of the 
minimization would be package count. It should also be noted that, for a fixed board size, as the cost of the IC 
packages drops, the cost of the connections becomes dominant and the emphasis of the minimization shifts 
accordingly.2 

For testing purposes, redundant circuit are not as testable as their irredundant equivalents, since redundancy masks 
faults (see Chapter 12). 

From the preceding, it is evident that judicious minimization remains an important part of any cost-effective design 
and implementation.  

This and the following chapters will present some of the new techniques in minimization such as Svoboda’s weight 
algorithm and the fundamental product concept, and some of the logical-instrument teaching aides that have been 
used to demonstrate the theorems behind these techniques. 

8.2 Single-Output Minimization 

For simplification, the minimization techniques will be presented using a single-output combinational circuit as shown 
in FIG 8-1. (A brief look at multiple-output minimization is included in Section 8.6). 

8.2.1 Design Constraints 
The selection of a minimization technique is a function of the overall objectives. Any design must be implemented 
under certain constraints similar to those called out in Table 8-1. A design is also broken up into units that are of a 
reasonable size for human comprehension and/or for the purpose of honoring the limits of design support systems 

                                                           

1 Holds true for today’s ASIC designs. 
2 This pattern continues to evolve. Die size and power are driving forces today. 



Chapter 8  Copyright © 2012 WhitePubs Enterprises, Inc.  

 

 
2 

will restrict the actual “cleanness” of the final design. By breaking a circuit up into modules, some opportunities for 
minimization will become forbidden. The further partitioning into sub-modules will also affect the minimization. The 
tradeoff is the design time. Each additional variable increases the problem complexity by a factor of two in the binary 
space. Therefore, it is more efficient if, after the initial module design is completed, it is reviewed for further 
reductions. 

Sub-module size is a function of the techniques available for the design, If an APL program such as the package in 
the first seven chapters of this book is used, the restriction is thirteen to fifteen variables (limited by the workspace 
size).3 The parallel Boolean processor, if built as discussed in a later chapter, could handle up to 22-variable 
modules. 

The design constraints such as device tipe,, board space, etc., will determine the desired result of the minimization to 
be used. For example, NOR-NOR gate staging implements the minimal ∑∏ form, while NAND-NAND gate staging 
implements the minimal ∏∑ form. If multiplexors may be used, Marquand mapping and column-only minimization 
should be performed. 

For any of these approaches, the underlying minimization techniques are the same. 

8.2.2 Minimization by Inspection 
There are many instances where the algebraic expression or the logical map (Venn, Veitch, Karnough, Marquand, 
Triadic) is simple enough for obvious reductions to be made without any particular technique being formally applied. 
This is the case for the simple expressions of six or fewer variables such as: 

 Y = A + AC + AB 

which may be immediately rewritten as 

 Y = A 

By recognizing that  

 A (1 + C) = A (1) = A 

Table 8-1  Design Constraints 

Design Constraint Comment 

Cost Affects everything 

Fan-In, Fan-Out Function of logic family to be used 

Logic Type Any constraint on NAND, NOR, etc., availability [base die process 
and wafer-fab line scheduling] 

Timing Consideration High-speed logic requirement 

Board Size Available “real-estate” (restricts package/gate count) 

Reliability Requirements Constrains redundancy allowed 

Time How much effort can be expended 

Support Computer assist; Manual Reductions; 

Power Requirements Further constraints on the implementation 

Number of Variables Pin-out limitations (primary variables); internal or secondary 
variables are a functions of the number of connections) 

                                                           
3 Computer capacity at the time bears no resemblance to what we have today. 
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Design Constraint Comment 

Partitioning Breaking a module up into manageable pieces 

Module Definition Module boundaries should be maintained 

Classification of Design Spacecraft (most minimal, most reliable); military (rugged); 
commercial  

Design Constraints (Con’t) 

 

 

Figure 8-1  Combinational, Single-Output Circuit 
 

An equivalent example for a map wpld be the appearance of an obvious structure as shown in Figure 8-2 for 
Karnough and Marquand maps of  

  Y = X3X1 + X3X2 + X2X1 

8.2.3 Minimization and Mapping by Observation 
For a small number of variables, a function to be minimized may be mapped by expanding the expression into a sum 
of products form and marking a “one” on the map at all points corresponding to a minterm of the function. Points 
which are logical distance one apart are connected. (On a Karnough 4-variable map, these would be adjacent points.) 
The resulting structures represent reduced terms. The terms of the largest structures form the prime implicants of the 
function. 

This is a casual approach and as the number f variables and/or the number of minterms of the function increases, the 
reliability of this method decreases. 

 

Figure 8-2  Reducing a Simple Function 
 

8.2.4 Minimization by Algebraic Manipulation 
Algebraic manipulation of an expression for a function to change it into a reduced minimal form is tedious and prone 
to human error. The same disadvantages may be cited for tabular reduction techniques. 

Figure 8-3 demonstrates an algebraic reduction and presents a Marquand map of the sample function. 
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Figure 8-3  Algebraic and Map Minimization of a 5-VariableFunction 
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8.3 Svoboda's Weight Algorithm 

A convenient algorithm for manual or programmed minimization of a function is the Weight Algorithm developed by 
Svoboda. It is readily applied to manual solutions of up to eight (8) variables, depending upon the complexity of the 
function. To perform the weight algorithm manually, proceed as follows: 

1. Map all terms where the function Y is true as "1" points on a Marquand Map.  (A Karnough map may be 
used but it is inconvenient.) Include all "Don't Care" terms as "#" points. Unmarked points are those for 
which the function Y = 0. 

2. Connect all pairs of points of logical distance one, where pi = 1 or pi = #, where pi is the label of point i. All 
such connections are referred to as "edges".  

3. Using a second map (for clarity), fill in the squares corresponding to the minterms of the function Y (all pi = 1) 
with the number of edges connected to that minterm. Include in the count edges between minterms where 
both pi = 1, and between minterms where one pi = #. 

4. Scanning the points sequentially from the origin (P0), find the minterm with the lowest edge count or weight. 
The first search should be for points with weight w = 0.) This is a critical point of the function Y. 

In his paper, "Ordering of Implicants", Svoboda discusses the natural phenomena that, when coverage is 
made from the origin forward in sequence, the probability of the minimal function expression being obtained 
is increased. The ordering concept is the basis of the weight algorithm, fundamental product coverage, and 
the multiple-output minimization. 

5. Select the term representing the largest structure (edge, face, and cube) which covers that minterm. [Not 
limited to 3 dimensions.] This is a prime implicant of the function. 

6. Record the prime implicant and mark all minterms of the prime implicant as covered by labeling the points 
as Don't Cares. 

7. Continue scanning from the last critical point to find the next uncovered minterm with the lowest weight. If 
there are none with the last selected weight value, increment the weight value by one and return to the origin 
to begin scanning again. 

8. Repeat steps 5 through 7 until all minterms of the function are covered. The selected minterms form the 
critical set of minterms of the function. 

The problem with the algorithm is that, where a choice of structures exists, the algorithm fails. In some cases a 
solution may be obtained by choosing the structure which covers the most 1s or uncovered minterms. Where there 
are equal choices, there is more than one solution and the algorithm fails to provide a choice of one best solution. In 
many cases, there is little practical advantage in pursuing more than one of the minimal solutions. 

The algorithm is presented here without proof. Theorems for this and other procedures are presented in Chapter 9. 

Figure 8-6 presents a step-by-step solution of a 5-variable function using Marquand Maps. Figure 8-5 presents an 
interesting 6-variable, incompletely specified function. The latter example appears throughout the text. 
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Figure 8-4  The Weight Algorithm for a Five-Variable Function 
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Figure 8-5  The Weight Algorithm for a Six-Variable Function 
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8.4 Logical Instruments: The Weight Deck (Original 80-Hole Punched Card Deck)  

8.4.1 Description of the Cards 
As a teaching aide4 for the weight algorithms, Svoboda developed a deck referred to as the weight deck, a set of 80-
column punched cards where each card represents a point in the 6-variable binary space. 

Each card is indexed in the upper left-hand corner by the row-column short-hand index in the form xn (letter-
digit).Each card is also indexed in the upper right corner by the decimal point identifier. 

The card is punched with a group of six vertically grouped punches for each point in the binary space.  Holding the 
card so that the eighty columns run vertically, from top to bottom and so that the punch rows zero through seven run 
from let to right, the groups are seen to be arranged in rows and columns corresponding to the Marquand Map. (See 
Figure 8-6.) 

 

Figure 8-6  Weight Deck Card A0 

 

 

 
                                                           
4 1960s, 1970s 
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A sextet is non-punched at the point corresponding to the point the card represents. One punch is a sextet is non-
punched if the point in that sextet represents is at logical distance one from the point represented by the card. The 
particular punch position corresponds to the variable which changes (the variable missing from the term representing 
the edge formed by the two points).  

8.4.2  Finding the Weights for the Six-Variable Example 
Referring to Figure 8-5a, to obtain the weights or edge counts for the minterms of the function, from the set of 64 
cards representing th binary space, remove those cards which represent the zeros of the function. 

The set of cards representing the zeros, when aligned and held to a light (hold up in front of a lightbulb), will show 
one punched position in each group or punch positions for each edge which may be formed between "1" and "Don't 
Care" points of the function. 

By reading a count of the punch positions punched in each sextet, the weight of the point that sextet represents is 
obtained. 

In addition, the punch position contains the information describing which edge of the six possible for any point exists. 
The lowest punch position of the sextet corresponds to x0 and the highest to x5. 

For our example, use the cards representing the points: A0, B1, B5, B7, C0, C5, D5, D6, D7, E0, E7, F0, F2, F4, F7, 
G0, and G2. These cards will produce the weights for the "1" and for the "Don’t' Care" points. The maps shown earlier 
did not record the weights for the "Don't Care" points. (See Figure 8-5b.) 

8.5 Svoboda's Fundamental Product Procedure 

8.5.1 Introduction 
For more difficult problems, the structures or terms which cover a given minterm may not be "visible", or more than 
one structure of seemingly identical properties may cover the minterm. In these cases, the choice of the proper term 
for the best coverage becomes non-trivial. The fundamental product and the theorems of mutual term exclusivity 
were developed for these situations. 

The fundamental product of a minterm is defined as the product of those literals that occur in every edge that can 
be connected to the minterm or point under examination. In other words, it is the product of those literals that are 
present in every term that covers the minterm. 

An effective literal is a literal that, when added to the literals of a fundamental product, forms a product that causes 
ones to be included in the term and no zeros to be included. 

Any minterm, which is also covered by all of the prime implicants, which are found for the minterm under examination, 
is called mutually term exclusive. 

8.5.2  The Procedure for Finding the Fundamental Product and the Effective Mask 
To manually perform minimization via the fundamental product modification to the weight algorithm, proceed as 
follows (note that this is a programmable procedure): 

1. Perform the first steps of the weight algorithm to find the weights of all minterms of the function to be 
reduced. 

2. Begin at the origin and scan in decimal index order to find the first critical point (as per the weight algorithm). 

3. Find the fundamental product for that minterm by listing all of the edges that can be formed from that 
minterm to points that are minterms or points that are Don't Cares. The fundamental product will be those 
literals which appear in each and every edge. 

4. Examine (using a scratch map) only those points represented by the fundamental product. Are there any 
literals that may be added to the fundamental product to form an effective mask such that all ones visible on 
the scratch map are covered, but no zeros are covered? These literals form the effective mask. 

If there is a failure to find an effective mask, mark this point as “failed” and proceed to the next critical point 
and repeat the process. 

If there is success, the term so formed belongs to the minimal form. Mark all minterms that have been 
covered by this term as “Don’t Cares” and proceed to the next critical point. 

5. Periodically retry “failed” points. 
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6. Repeat steps 3 through 5 until all minterm points are covered. 

Part of the solution of the six-variable problem using the fundamental product approach is shown in Figure 8-7. The 
partial solution should be compared to that of Figure 8-5. Note: it is still possible to have multiple solutions. 

 

 
Figure 8-7  Start  
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Figure 8-8  Continued 
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11 Chapter 11  Designing with MSI-LSI 

11.1 Introduction 

Once a set of design constraints have been established, there are several options available to the designer to be 
used in implementation. Circuit built with SSI-level logic may be faster, may be minimal in parts count, may be 
irreducible, and, therefore, may be more testable than those built using MSI or LSI devices.1 SSI-level designs take a 
relatively longer time to develop, debug, and document. It is acknowledged to be the most difficult. The criteria that 
determine the desirability of doing an implementation with SSI-level logic are: 

1. The required speed is faster than would be available with any other implementation; 

and  

2. The anticipated production volume justifies the expense of doing an SSI-level design. 

Where total testability is not a major concern, as is true for most commercial-level applications, MSI design with 
multiplexers and functions blocks (think IP) is attractive (reduces TTM – time to market).  While multiplexers are non-
minimal implementations of their output functions, which constrain their testability, they are easier to deal with and 
allow reduction in board space.2 Speed and power requirements are the determining factors in choosing to use 
multiplexers and other MSI function blocks. 

Programmable multiplexers (PMUXs), gate arrays (PGA, CGA), logic arrays (PLA, FPLA) and array logic devices 
(PAL) are available now in a number of configurations and sizes. Most of these are intended to assist in reducing the 
parts count for implementation of combinational functions. Some of the PALs have registered outputs and feedback 
paths and are for use in sequential logic implementation. All of there devices are contributing toward modular 
hardware designs.  

Sequential control functions may be implemented with microprograms using PROM/ROMs with the more complex 
controls using a microprogram sequencer.3 Higher-speed control functions are being implemented using bipolar bit-
slice devices (such as the Am2910), while less speed-restricted applications use one or more of the 
microprocessor/microcomputers (such as the Intel 8085). All of these devices are considered to be LSI and all of 
them require a software investment. The bit-slice devices require microprogramming, which may be accomplished 
with a pseudo-assembly –level language and a development system. [Meta-assembler.] The fixed-instruction-set 
microcomputers are programmable in assembly or higher-level languages, with some of the new devices to be 
programmed in PASCAL or a similar algorithmic language. [Today it would be C++ or Pearl.] 

As the implementation shifts from SSI to LSI, software design techniques, specifically modularity and structured 
programming, begin to become mandatory. Testing is no longer a hardware checkout operation, but requires 
software diagnostic packages. One advantage of LSI is the feasibility of putting the system diagnostic routines on-
board the PROMs, to simplify design debug and field testing. 

                                                           

1 Applies to the density levels of RTL in today’s design kit. 
2 This discussion was originally based on discrete design. Mid-1970s. MSI and LSI were in vogue, LSI was being thought of, and 
ASICs hadn’t arrived with a vengeance as yet. 
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Software development costs in computer systems have far exceeded those of hardware development. This trend is 
being repeated in LSI designs with the microprogramming development costs overriding the hardware costs. 

11.2 SSI Design 

To develop a minimal or optimal two- or three-level NAND logic circuit, with the third level for inversion of the logical 
variables, the equation of function y must be solved for its minimal ΣΠ-form. This is accomplished using the APL 
function: 

MINIMA (Z  1) 

which produces the desired expression. 

To develop a minimal or optimal two- or three-level NOR logic circuit, the equation of the function y must be solved 
for its ΠΣ form. This is accomplished by using the APL function: 

MINIMA (Z  1) 

which produces the desired expression. 

Conversion techniques exist for NOR-to-NAND and for NAND-to-NOR without restarting from the original expressions 
of the function y (refer to any text for a beginning course in logic design); however, the resulting network is not 
guaranteed to be minimal. Where an expression is factorable to produce terms of the form  (a b + a b), EXOR gates 
may be used to reduce gate count and to simplify implementation. 

Fan-in requirements can be achieved by factoring the minimal ΠΣ or ΣΠ forms. The fan-in requirements present in 
early SSI designs are more relaxed today with the allowances of eight (8) or more inputs allowed per gate. [The 
dragging of the load on the gate performance is, however, still problematic.] Fan-out requirements are generally 
alleviated by the use of buffer-drivers, and duplicate parallel paths. Present designs4  use a conservative limit of 
seven (7) loads per output for devices rated at 10 loads.  

11.3 Gate versus Connection Minimization 

Muruga and Lai (Muruga and Lei, "Minimization of Logic Networks under a Gneralized Cost Function", IEEE Trans., 
Sept. 1976, pp. 7893-907) reported on the calculations of the minimal networks for NOR gates for all functions of 3 or 
fewer variables, and for some of the functions of 4 variables. For the 77 P-equivalence non-trivial class representative 
functions of 3 or fewer variables, there are only two functions for which the minimal networks under GCM (gate 
reduction emplasis) and CGM (connection reduction emphasis) differ.  

They are: 

Y1 = X2 ⊕ X1 ⊕ X0 

and 

Y2 = X2X1X0 + X2 (X1 + X0 ) 

(Underlining equals negation) 

For these two functions, the minimal ΠΣ form was investigated and found to give: 

• the same number of gates as does the GCM reduction 

• more connections than does the CGM version 

• and fewer stages (gate levels and, therefore, gate delays).  

The GCM reduction reduces the gate count by one over the minimal ΠΣ form, but increases the connections by one. 
In one case, there is an added stage delay.  

The minimal ΠΣ forms of the two functions are shown in Figure 11-1a and b. A table comparing the various 
implementations in terms of number of gates, number of connections, and number of levels, is shown in Table 11-1 . 

 

                                                           
4 1970s – late 1970s 
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Figure 11-1  a and b. Minimal ΠΣ  forms of y1 and y2 

• = (# Gates, # Connections, # Gate Levels) 

 

Table 11-1  Minimal ΠΣ  forms of y1 and y2 Compared 

Function Minimal GCM CGM 

y1 (8, 19, 3) (7, 20, 4) (8, 16, 6) 

   (8, 16, 5) 

   (8, 16, 6) 

y2 (7, 13, 3) (6, 14, 3) (7, 12, 4) 

   (7, 12, 5) 
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Among 312 representative functions of P-equivalence classes of 4 variables requiring at most 5 NOR gates under 
GCM, 26 functions were found to have different minimal networks under CGM design constraints.  

Of the 26 functions: 

1) For 4 of the functions, they had GCM and CGM minimal networks where the number of gates levels or 
stages were equal. In 22 cases, the number of levels was at least one higher for CGM design constraints. 

2) For 7 of the functions, that were implemented in CGM, CGM had a gate count higher then the GCM version 
(higher by 1).  

3) For 8 of the functions implemented in CGM, CGM had 2 fewer connections then the GCM versions of those 
functions. The rest had a connection count that was lower by 1. 

4) For some of the functions, a gate count for the GCM version lower than the minimal ΠΣ form version was 
obtained by the introduction of redundancy, which in turn reduced testability. 

5) For some of the functions, a gate count reduction was accomplished through the use of a factored, 
equivalent form which added one gate level. 

Their conclusion was to use the gate criteria in minimization and design. (They were concerned specifically with chip 
area, i.e., die size, in their paper.). Our conclusion is to use the minimal ΠΣ and ΣΠ forms, factoring where possible 
for reduction but maintaining irredundancy (i.e., no redundancy allowed). 

The length of time available to design the network is an overriding constraint in all cases. For the minimal ΠΣ and ΣΠ 
forms, the APL function MINIMA is available as a design tool. Figure 11-2 examines three implementations of the 
function Muruga and Lai indexed as EBFF. (Their index uses HEX notation to fill in the rows of a 4-variable Marquand 
map.)  It represents the minimal ΠΣ form, a GCM (minimal gate) version, and a CGM (minimal connection) version of 
the function. 

 

Figure 11-2  Comparison of SSI Implementations 
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For the two functions of three variables Y1 and Y2 described earlier, the SSI implementation of Y1 is improved by 
using EXOR gates. (Figure 11-3.) A comparison between the implementation of the minimal  ΠΣ form of y in NOR 
gates and the EXOR implementation is shown in Table 11-2. 

 

Figure 11-3  An EXOR Implementation of y1 and Comparison of the Minimal ΠΣ  Form (data from 
datasheets – 1970s) 
 

Table 11-2  An EXOR Implementation of y1 and Comparison of the Minimal ΠΣ  Form 

Item Minimal ΠΣ NOR EXOR 

Cost 0.80 0.40 

Levels 3 2 

Packages`4 1  

Time 
(Speed) 

32ns 28ns 

Power 56mW 150mW 

  

11.4 MSI Design 

The decision to use SSI or MSI is dependent upon the complexity of the function being impolemented and upon esign 
constraints such as timing, board space, and power consumption.  

Multiplexer chips5 for 3, 4 and 5 variables are easy to use and input requirements can be read directly from the 
Marquand Map of the function. (Karnough Maps require permutation of certain columns to achieve a column-to-input 
order and are, therefore, not recommended here.) Muxs are available in some cases with true and complimented 
outputs and have 1, 2, or 3 chip-select or enable pins (S0, S1, S2), providing design flexibility. 

Multiplexers are formed internally from two-level logic, which makes them competitive in speed with SSI gate 
implementations. In some cases, they may even be faster than SSI doe to the reduction of interpackage6 time delays.  

The use of multiplexers reduces package count at the cost of increased power consumption per package. [Reduces 
macro count at the cost of increased power for the more complex macro.] 

                                                           
5 for today read "macros" 
6 for today, read "intermacro" or "interconnect" delay 
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The other factors that must be considered are: 

1) The number of connections 

2) The loading on the variables 

3) the loading on power and ground 

The use of multiplexers may or may not render the design "flexible", i.e., able to be altered with changes in 
requirements and specifications. Any function implemented in multiplexers is not necessarily minimal. Coverage will 
be column-minimal and the cost of possible increased loading. Figure 11-4 presents the one-of-four multiplexer in 
detail and an example derivation of input functions using a Marquand Map. 

 

Figure 11-4  One-of-Four Multiplexer 
 

Figure 11-5 presents the multiplexer implementations of Y1 and Y2 and a table summarizing the differences between 
the multiplexer, NOR Gate, and EXOR implementations is shown in Table 11-3. 
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Figure 11-5  Implementation of y1 and y2 with Multiplexers 
 

Table 11-3  Comparing the Implementations:  

Item Value Comment 

Time Delay: 21ns faster than a NOR gate (in the late 1970s) 

Power: 200mW More Power, More Heat 

Package count: 1 Same as for EXOR version 

Cost: $1.50 (approx) – More Expensive 

Differences between the multiplexer, NOR Gate, and EXOR implementations – See Table 11-2. 

 

Multiplexer sizes are of 1-of-2, 1-of-4, 1-of-8 and 1-of-16 (an oversized chip in those days). When a function larger 
than five variables is to be implemented, multiplexers may be cascaded.  

The 4-variable function EBFF is shown in Figure 11-6a, implemented using an EXOR gate to improve the connection 
count (8 instead of 12 for the same number of gates) at the expense of an added level and its delay.  

 Figure 11-6b shows the clean simplicity of a multiplexer implementation of the same function and the associated 
Marquand Map. 
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b. Multiplexer Version: (1, 11, 1) 

Figure 11-6  The Four-Variable Function yEBFF from Muruga and Lai's Paper 
 

Multiple-output problems are designed faster using multiplexers. The problem discussed in Chapter 8 and shown in 
Figure 8 (reference)  is shown implemented with multiplexers in Figure 11-7. Included is a table (Table 11-4) 
comparing: 

1) The individual output function SSI version 

2) A reduced multiple-output SSI version 

3) and a multiplexer version 

The multiplexer version in this case 

1) runs slightly faster 

2) has fewer connections 

3) uses less board space 

4) can be designed relatively faste 

5) and is easily debugged 

6) all at a cost of 2-4 times the power consumption. 

The choice is dependent upon the design constraint of specified allowable power consumption and heat dissipation 
capability. 
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Figure 11-7  Multiplexer Implementation of the Multiple Output Problem 
 

Table 11-4  Multiple Output Problem Implementation Comparison 

Version Gates Packages Connections Spares Levels Power 
(mW) 

Speed 
(ns) 

SSI 17 6 43 0 3 170 30 

Mult. 
Out. 15 6 38 3  

gates 3 150 30 

MUX 3 MUX  
+ 1 4 34 5 

inverters 2 685 18 

      445 26 

 

As more variables are introduced, choices in which multiplexers to use are added. The six-variable example 
discussed in Chapter 8 is implemented using a 1-of-16 MUS and again using 1-of-8 MUIXs in Figure 11-8  

The map of the function, its equation, and a table comparing the three implementations --- SSI and the two MUX 
versions --- are presented in Figure 11-9 and Table 11-5. 
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Figure 11-8  Svoboda's Six-Variable Example done with Multiplexers 

 

Figure 11-9  Six-Variable Marquand Map for the Example  
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The equation is: 

 

Table 11-5  Comparison of Implementations of the Six-Variable Example 

Version Stages Connections Packages Time/speed Power Approx. Cost 

SSI (NAND) 3 43 6 30ns 220mW 1.20 

MSI, 1-of-8 
MUX, NOR, 
EXOR 

4 37 4 51ns 500mW 2.60 

MSI, 1-of-16 
MUX, NOR, 
INV 

4 28 3 41ns 316mW 1.80 

(Data from datasheets (late 1970s), Numbers are Typical Case) 

11.5 LSI Design Techniques 

There are in existence a number of microprogrammable devices which may be used to reduce parts count and, 
therefore, required board space. A few examples of the most common of these are called out in Table 11-6 
Programmable devices, with the exception of ROMs, are effective in design situations where the number of input 
variables is large and the number of active logic states is small --- that is, in cases where the logical map of the 
function is sparsely populated. 

Table 11-6  Examples of Microprogrammable Devices (late 1970s) 

Device  Example Product (late 1970s) 

Programmable Multiplexers Raytheon 29693 PMUX (10 inputs, 1 term/MUX input, 4 
1-of-8 MUXs) 

FPLA Signetics N82S101/10 (16 inputs, 48 terms, 8 outputs, 
50ns) 

PLA National DM 75 7516 (19 inputs, 70 terms, 8 outputs, 
150ns) 

PAL Monolithic Memories PAL10H8 (10 inputs, 8 outputs, 4 
registeresd outputs, 64 terms) 

Registered PAL  Monolithic Memories PAL16X4 (8 inputs, 8 outputs, 4 
registered outputs, 64 terms) 

ROM: EROM Signetics SN 74S271/371 (256x8 with 45ns Access 
Time) 

ROM: PROM Signetics SN 74S271/371 (256x8 with 45ns Access 
Time) 

ROM: Registered ROM AMD Am27S26/27 (512x8 with 20ns Cp-to-Output time – 
prelim) 

 



Designing with MSI-LSI 

   
12 

11.5.1 Programmable Multiplexers 
One of the programmable is the Raytheon 29693 PMUX listed in Table ----. This device has 10 inputs, all inverted, 
and 4 inverted outputs. Logically it is equivalent to four 1-of-8 multiplexers with OR gates at each of the 10 inputs. 
The multiple-output problem presented earlier is of the type suitable for a PMUX implementation because: 

1) The MUXs have common select lines 

2) The number of input variables is less than 10 

Figure 11-7 is very nearly a program for the 29693 PMUX. The only change required is to use X3 + X3 as the input 
where Vcc is shown. Documentation of this device is one to four Marquand Maps (one for each output used) drawn 
with select variables as column indices and inpout variables as row indices. Note that an external inverter for X3 
would be required. Note also that this example under-utilizes the PMUX ability and is for demonstration only (this 
would never be built). 

11.5.2 Programmable Logic Arrays 
A programmable logic array (PLA) is an LSI implementation of the classic digital net, a sum-of-products form for 
positive logic. It is general-purpose and user-definable within limits. Both the variable composition of the individual 
product terms and the assignments of the terms to different outputs are specified by the designer. 

PLAs are characterized by the following attributes: 

1) The number of inputs 

2) Buffered or unbuffered inputs 

3) The number of minterms or product terms 

4) The number of outputs 

5) The characteristics of the outputs:  (late 1970s) 

a. TTL 

b. Open-Collector (OC) 

c. Tri-state  

6) Programmable output inversion 

7) Access time 

There are two basic types of PLAs, determined by how they are programmed. A factory- or mask-programmed PLA is 
typically larger than 96 minterms. Factory programming uses the metal-mask technology. 7 

A field-programmable PLA (FPLA) typically has 48 minterms and may use one of three programming technologies: 

1) Nichrome fuse 

2) Polysilicon fuse 

3) Avalanche induced migration 

Given a PLA with the following characteristics: 

1) 16 inputs, either true or inverted, to any AND gate 

2) 8 outputs, either true ior inverted 

3) 48 product terms to any OR gate 

4) Typical access time of 50ns 

5) Power dissipation of 620mW (Typ.) 

6) 28-pin DIP (dual-in-line package) (approximate space of 3 16-pin DIPs) 

                                                           
7 sizing, technology will have varied by now of course, but the design principles remain.  
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The six-variable functions shown in Figure 11-10a are to be implemented. These functions are not necessarily 
minimal. These are, using the available parts above: 

1) 6 inputs required 

2) 14 product terms, of which 3 are seen to be identical 

3) and 4 outputs. 

If the equations given had not been in a sum-of-products form, expansion would have had to be performed to obtain 
this format as each output is a sum-of-products function. Internally the PLA is an AND-OR net with an inverter 
programmable at the output if desired.  

For the functions shown in Figure 11-10a, a single PLA may be programmed as shown in Figure 11-10b. No 
minimization needs to be performed. 

 

 

Figure 11-10  Designing with a Small PLA 
Svoboda's six-variable problem could easily be implemented with one PLA-type device. There are 20 product terms 
required, less than half the number available in the smallest of these devices. The product terms can be trivially taken 
from the Marquand Map of the function without minimization. The trade-offs are increased power consumption for 
less board space, a simpler design effort (design time), and reduced testability (as introduced by redundancy). 
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Note that under-utilization of the LSI devices is quite common in practice and is cost-effective for commercial 
applications. 

Where the product terms exceed the number (48, 96, whatever) available by a small amount, some minimization may 
be performed to reduce the function to fit the boundaries. (Physical constraints forcing better design practice.) 
Svoboda's multiple-output minimization is suitable for these cases.  

Where there are enough product terms to warrant it (double or triple the number available in one PLA), a second PLA 
may be paralleled with the first to produce the added capability. All input and output lines would be common.  

Where the number of outputs exceeds that available (8) and a simple added SSI or MUX unit is not sufficient to 
handle the overflow, PLAs may be paralleled where the input lines are tied common and the output lines are 
separate. 

Combinations of these two schemes may be used to implement odd-sized problems. Note that open-collector outputs 
and low-level logic is required for any of these cases.8 

An important point with PLAs is that they are pure digital internally. In cases where the design is sensitive to signal-
line glitches, PLAs may be preferable to naked ROMs and should be considered. It should be noted that9, while an 
18-input ROM would require 256K internal cells and is several years away by present technology (prophetic – we met 
that an more!), PLAs can provide a subset of the same logical space today (late 1970s). 

ASICs, not even a gleam in someone's eye at the time of this text have already lost half their 
production starts to very big FPGA. Designs under four million equivalent gates can be effectively 
done with FPGAs. In the late1970s, we had not yet envisioned millions and millions of gates. We 
were trying to develop methodology for what we had and what would follow.  

CBA arrays were better than standard cells, and then in a flash, they lost half their starts when a 
new approach made standard cells smaller in die area than CBAs. Highly customized ASICs, 
where the designer chose a size and crammed a design into it, lasted 6-10 years and then 
vanished almost overnight as software allowed designers to lay out the die and take control of 
die size. Component houses with their own fab lines dropped the fab lines, again, almost 
overnight, as the size of the wafers surged from 3 to 6 to 8 to 12 inches, they are looking into 18 
inch wafer (and money is the hold-up – a fab is expensive); the process dropped from 5 micron 
to 0.02 micron (20 nanometers) and less, and the overwhelming cost of the unique and 
individually developed software tools gave way to mass-produced EDA tools from firms that 
specialized and the foundries still standing took over all the library development in-house. From 
picking and choosing process foundry for a design based on technology, the choice is usually 
driven by the space available in a wafer production line.  

Changes in technology happen fast. Methodology remains. 

11.5.3 Programmable Array Logic 
PALs are also referred to as programmable gate arrays. The PAL product line of Monolithic Memories is 
characterized by 8 to 16 inputs, available internally in true and complemented form, and 2 to 8 outputs, with a varying 
number of product terms. The low end of the product line is the PAL10H8 [late 1970s] with 10 input variables, 8 
outputs, and two product terms per output. 

A PAL is different from a PLA in that the number of terms per output is fixed, imposing more constraints on the 
designer. Some PALs are available with feedback and with registered output and feedback. While a PLA replaces 
SSI combinational logic, PALs exist that can replace sequential logic. The PAL16R6, for example, has 8 inputs, 8 
outputs of which 6 are registered, with all outputs fed back. The interested designer should refer to the Monolithic 
Memories PAL Handbook. [Monolithic Memories, Inc. "PAL Programmable Array Logic Handbook", third edition. 
1983. ]10  

 

                                                           
8 Someone familiar with the parts available at this time needs to comment on this statement, since technology switched from bipolar 
to CMOS, and NAND and NOR gates are the style of the day. 
9 Over time, the phrase "note that" and all its derivatives became entrenched on my hit list. Along with “In order to”. I will try to get 
back to kill them----- 
10 No version of this referenced document appears to be on the web at this time. 
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See Wikipedia. “MMI was founded in 1969 by former Fairchild Semiconductor engineer Ze'ev Drori. MMI was 
acquired by Advanced Micro Devices (AMD) in 1987, though AMD later spun off their programmable logic division as 
Vantis, which was then acquired by Lattice Semiconductor.” Anyone with additional information should put it up on 
the web. Anyone with access to the PAL book – consider adding it to the vintage material on-line. Bit-savers collects 
these things. 

 

The six-variable problem of Svoboda requires 20 product terms, 6 inputs, and 1 output. By using a small amount of 
minimization to reduce the number of product terms, a PAL could be utilized. Figure 11-11 shows the program 
connections to construct the solution using a PAL10H8 and an OR gate. The terms programmed are from the 
multiplexer implementation of the problem shown in Figure 11-8. Column minimization was applied to the Marquand 
Map of the function in both cases. The PAL replaces two 1-of-8 MUXs and five NOR gates. The OR gate is in 
exchange for the EXOR of Figure 11-8. 

 

 

Figure 11-11  Implementation of the Six-Variable Problem with a PAL 
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11.5.4 Design Example 
Using Baucham’s modified Hamming Code for high-speed single-error correct, double- and some triple-error 
detection( Figure 11-12), which is for use with 16-word memories, most of the parity equations of the code can be 
implemented via simple SSI and MSI devices.  

 

 

Figure 11-12  Basham’s Modified Hamming Code 
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The parity equations for the generation of check bits may be implemented with six 74S280 parity generators (Figure 
11-13a). 

 

Figure 11-13  Parity and Check Bit Generation 
Decode logic is also similarly based on parity generators to provide the syndrome check bits (Figure 11-13b). The 
overall syndrome bit SD is computed using all data bits and all check bits. Using Pe for even parity, and Po for odd 
parity: 

SD = Pe (C1, C2, C3, C4, C5, C6) + P0 (D0, …, D7) + Po (D8, …, D15) 

However, Syndrome Bit 5 is found from:  

S5 = Po (D8, …, D15, C5) 

To keep part count down, redefine: 

SD = S5 + P0 (D0, …, D7) + Po (C1, C2, C3, C4,  CD) 

Then use a multiplexer to generate SD (see Figure 11-14). 

 

Figure 11-14  Syndrome Bit Generation Using a Multiplexer 
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Given the syndrome bits, a decode operation is necessary to determine error status as: 

1) No error has occurred 

2) One, and, therefore, a correctable error has occurred 

3) Or, more than one error has occurred (uncorrectable) 

The decode matrix is specified via a Marquand Map in Figure 11-15. 

 

Figure 11-15  Syndrome Bit Decode 
 

The status signals may be generated using two 1-of-16 multiplexers (Figure 11-15). Demultiplexers can decode the 
individual bit to be corrected and correction accomplished by inverters and XOR gates. 

 

Figure 11-16  Control Signal Generation 
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The syndrome bit decode could also be implemented using a single PAL. Here, Marquand Maps can provide the 
necessary documentation and can be used as a tool for minimization. A PAL such as the PAL16L8 can be used to 
replace the two 1-of-16 MUX chips and an AND gate. The coding for the PAL16L8 is shown in Figure 11-17. 

 

Figure 11-17  Programmed PAL for Control Signal Generation 

11.5.5 Read-Only Memories 
Read-Only memories or ROMs (Figure 11-18) contain a bit position for every combination of input variable validities 
for each of its multiple outputs. A ROM may be thought of as containing the information from η Marquand Maps, 
where η is the number of outputs. A ROM is characterized by: 

1) Its programmability (field, PROM, or factory, ROM) 

2) Its re-programmability (erasable, EPROM, or not) 

3) Whether it has output latches or registers (registered-PROM) 

4) Its size, expressed as the number of addresses (2n, where n is the number of inputs) 

5) The number of outputs 

6) Whether it is all “1”s or all “0”s initially 

7) Its speed (access time if unregistered; set-up time and clk to output time if registered) 

8) Its output (Open-Collector or tri-state) 

9) Its enable structure 
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Figure 11-18  ROM Logic Block 
ROM family elements (EPROM, PROM, etc.) are useful, for example, as decoders and as sequential controllers. 
Using a ROM represents a shift from high-speed, custom, hardwired SSI logic to possibly slower, flexible, LSI 
firmware design. 

 A ROM plus a sequencer, such as the Am2910, represents a structured approach to sequential design. It may be 
said the microprogramming is to hardware design what structured programming is to software design. There are 
parallel trade-offs which must be considered in each case. 

Unlike the PGA, PAL, PLA and PMUX devices, a ROM can be erased (EPROM). Both PALs and ROMs have 
development  system assemblers available to assist in their programming. A ROM is documented by the assembly 
program which prepares its tape or by a manually-prepared mnemonic program listing. 11 Where the circuit is 
sensitive to glitches in signal lines, registered PROMs or external latches are preferred to “naked” ROMs. 

 

Figure 11-19  Multiple Output Problem Implemented in ROM 
Figure 11-19 demonstrates the multiple-output problem implemented in a 32 x 8 bipolar PROM. Svoboda’s six-
variable example is given in Figure 11-20 using a 256 x 4 bipolar PROM. In any design, the fact that there are unused 
areas in the PROM is not a problem. Unused areas allow for minor modifications with a major redesign. They also 
allow for patches to be made to the “microprogram”. 

 

 

                                                           
11 Designing with the bit-slice architecture (Am2900 family) and microprogramming in general are not covered in this book. 
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Since this PROM is all “0”s before programming, all Don’t’ Cares (#) are taken as “0”. 

 

Figure 11-20  Svoboda's Six-Variable Example Done with a PROM 
 

11.5.6 Sequential Design Example 
To demonstrate microprogramming as a sequential design tool, a traffic light controller is included here. Note that this 
is NOT a valid application for the Am2910, but it is sufficient to demonstrate the use of this device in addition to being 
a problem of manageable size for discussion. 

A sequencing schema is given in Figure 11-21. The starting point is main-street-green (MG). During main-street-
yellow (MY), a test is made to determine if a protected left turn (MLT) is desired. If it is, main-left-turn-green and 
main0-left-turn-yellow are cycled. 

Next, the side street-turns-green (SG) for its time period. During the side-street-yellow (SY), tests are made for:  

1) Manual override, where the lights will all flash RED (accident control).  

2) For night, where the lights will all flash RED (STOP), except  

3) For night, for the main street lights, which will all flash YELLOW (CAUTION).  

4) For night, for the side-protected left turn, in this priority. 
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Figure 11-21  Traffic Light Controller12 
 

If MANUAL is present, set all lights RED and loop here until MANUAL occurs. 

If MANUAL occurs, return to normal cycle (or go to night mode if NIGHT is present). 

If NIGHT is present, set the lights and loop until DAY (= NIGHT) or MANUAL occurs. 

The times are in seconds and a 5-second clock is assumed.  

The lights are controlled by three signal lines, each, to provide signals RED, YELLOW, GREEN, RED FLASH and 
YELLOW FLASH.  

 

                                                           
12 Used in the ED2000A Seminar – Bit-Slice Design: Controllers and ALUs; and in the subsequent textbook. 



  Copyright © 2012 WhitePubs Enterprises, Inc. 

 
23 

The state sequenced paths for the light controller are given in Figure 11-22 and are considered a fixed constraint for 
the purpose of the problem. (That may seem arbitrary, but remember that this is for demonstration only.)  

 

Figure 11-22  Light Control Signal State Sequencing 
 

The control portion of the system is shown in Figure 11-23 and uses one Am2910 sequencer, three 32 x 8 PROMs 
(registers not necessary here; the pipeline is shown only to demonstrate output enable), and one MUX. 

MLT, SLT, NIGHT, MANUAL and START are assumed to be available. 
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Figure 11-23  Traffic Light Control Design with the Am2910 
 

A microprogram for the controller is given in Figure 11-24 using mnemonics rather than bit-patterns.  (A System 29 
development system can be used to generate the bit pattern for the PROMs.)13 

The Am2910 has 16 instructions which facilitate programming. A summary of those used are given in Table 11-7 

A direct similarity can be drawn to FORTRAN-type or assembly-level languages.  

                                                           
13 See www.Donnamaie.com and look for Am2900 vintage publishing for information on the System 29. 
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Figure 11-24  Microprogram for the Controller14 
 

Table 11-7  Table of Am2910 Instructions Used in the Sample Design 

Instruction Function 

CONT Continue, address = address + 1 

LDCT Load counter and Continue 

RPCT Repeat starting at given address until counter = 0 (Do-loop) 

JMAP GO TO branch address 

CJP Conditional jump (IF – THEN) 

JZ Initialize jump zero 

 

                                                           
14 The use of a Meta-Assembler was the means to program the Am2900 Family – these days, support assemblers and compilers 
are generated with C++. There is, however, still a table of bit-level values that must be equated to the defined mnemonics of the 
higher-level language.  
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12 Fault Detection Techniques 

12.1 Faults 

12.1.1 Fault Definition 
In any circuit composed of logic gates there is the possibility of the occurrence of a fault. A fault is defined to 
have occurred when any circuit variable assumes a value (1, 0, or X) which differs from that expected, that 
is, which violates the original circuit equations.  

12.1.2 Masking a Fault 
The presence of an internal or input fault may not be observable at the circuit output, in which case, the fault 
is considered to be masked. 

A single fault may be masked as a result of: 

1) Reconvergent fan-out, where  unequal parity changes have occurred; 

2) Circuit redundancy; 

3) Previous occurrence of an undetectable fault. 

Masked faults are undetectable by their definition since the observed circuit behavior is correct. However, 
the occurrence of a second fault may uncover a previously undetectable fault. To be complete, the test set 
must include tests for this case. 

Figure 12-1 presents a redundant circuit and its Marquand Map. The circuit implements three terms to 
cover the eight points on the map when the two terms, x3x0 and x3x1 are sufficient. (Note: Underscore used 
for negation.) 

 

Figure 12-1  Redundant Circuit 
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12.1.3 Fault Types 
Faults may be indeterminate in value (suspended between logical "1" and logical "0"), or determinate in 
value (exhibiting a "0" or a "1").  

Faults may be transient (indeterminate, time-varying), in which case they are elusive and difficult to detect. 

Faults may be permanent (considered "hard" or "solid"), in which case they are easy to detect if they are not 
masked and if a proper test is used.  

Faults may be multiple in occurrence, which has always been considered a rare event. (With higher circuit 
densities, this event has increased somewhat in probability.) 

Faults may occur singly, which is considered to be the most likely event. 

Further, multiple faults can occur in such a manner that there is an equivalent single fault for them. A test 
which detects the presence of this equivalent [single] fault will be sufficient to detect the presence of [the 
multiple] faults. It should be noted the fault identification is not possible [in this circumstance]. 

12.1.4 Fault Equivalencies 
There are several equivalencies that exist which are useful in fault detection and which make fault location 
considerably more difficult. Some of these equivalencies are: 

1) One or more inputs to an OR gate stuck at "1" (SA1) is equivalent to the output of the OR gate 
being SA1. 

2) One or more inputs to an AND gate stuck at "0" (SA0) is equivalent to the output of the OR 
gate being SA0. 

3) All inputs to the OR gate SA0 is equivalent to the output of the OR gate SA0. 

4) All inputs to an AND gate SA1 is equivalent to the output of the AND gate SA0. 

5) Failures on both the inputs (one or more failures) and the output of a gate will propagate the 
gate output failure, masking the input faults. 

6) Any gate output has, as an equivalent, a single gate input fault (not necessarily an input to that 
gate) or multiple input faults. However, any gate input fault does not necessarily have an 
equivalent gate output fault. 

12.1.5 The Problem 
The most common fault for current technology (such as DRL, DTL, RTL and TTL1) is the single, permanent, 
stuck-at fault where one of the following has occurred: 

1) A gate output is stuck at logical "1"  (SA1) 

2) A gate output is stuck at logical "0" (SA0) 

3) Any single gate input is stuck at logical "0" 

4) Any single gate input is stuck at logical "1" 

NOTE: The single fault assumption is not proper for the initial circuit checkout. 

Component failures which alter or affect voltage levels, current levels, pulse widths, or other circuit timing, 
but which do not alter or affect the logical function realized by the circuit, will not be considered here, These 
qualitative failures are presumed to be detected during initial electrical parametric testing. 

To be complete, a test set must be able to detect any single detectable fault. It should also include test for 
multiple faults, where such faults are not covered by equivalent single faults. Further, the test set should 
include tests for faults which become detectable when another undetectable fault occurs (this is a special 
type of multiple fault). 

                                                             

1 1979 
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The circuit of Figure 12-2 has seven input lines and a SA0 or SA1 fault may occur on any line. There are, 
therefore, fourteen (14) single faults possible for this case. There are, by computation, 84 possible double 
faults which may occur. All 84 double faults are "covered" by the fourteen single faults. 

 

Figure 12-2  Sample Circuit used in Comparing Methods 
Further, of the fourteen single faults, not all are distinct. As an example, a test for x0 SA0 also tests x4 SA0 
and x6 SA0. This allows a test set to be derived which is smaller than the exhaustive test set (24 = 16 tests 
for this case) and often smaller than that produced with the "one-test-per-fault" approach. 

If it is assumed that one or more permanent stuck-at faults (SA1 or SA0), or the equivalent, has occurred, 
then the problem is to construct a complete and minimal test set such that this fault is detected, provided 
that masking has not covered the effects. 

12.2 The Test Sequence 

The original paper on Boolean differences by this author, written as a class exercise in 1971, began the 
search to find a method of fault detection which would be producible by the Boolean Analyzer. IN the course 
of studying the fault detection problem, a number of papers, several of which have been used as references, 
were examined and the various methods presented catalogued by their approach to the problem. 

With the discovery of certain properties of the edge structure of the Existence function, which allows the 
formation of links, and the first hypothesis for sequence construction, most of the examples from those 
papers were re-examined. In each case, both the original procedure and the Test Sequence procedure were 
performed and the results compared. For combinational circuits, the limit of this research, the results in all 
cases were favorable [to the Test Sequence]. 

12.2.1 Deriving the Existence Function 

12.2.1.1 The Equations 

The first step in developing a Test Sequence is the derivation of the equations of a given circuit 
configuration. Equations are first derived for each of the logic gates, using the circuit primary inputs as 
known variables, and all intermediate and primary outputs as unknown variables. 

A primary input is an input connected to an external source. A primary output is an output going to an 
external "sink" or connection. All other lines (interconnects) are to be considered as internal or intermediate 
lines and their labels are handled as intermediate variables. For the purposes of this paper, a logical gate 
will be constrained to be an SSI-level gate (AND, OR, NAND, NOR, or INV (a.k.a. NOT)).  

As an example of this first type of equation derivation, there are three equations for the first circuit, Circuit 1, 
of Figure 12-3. They are: 
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x6 = x3x4        x5  =  x1x2        x7  =  x5  + x6 

Labeling for this case has begun with x1. 

 

 

Figure 12-3  Examples of Labeling; Equations 
For the case where there is a fan-out of primary input lines, the first line is labeled and treated as a known 
variable while the remaining fan-out lines are labeled and treated as intermediate variables.  Equations must 
be added to the equation set which equate the first [fan-out] line with the remaining fan-out lines.  

For example, the second circuit, Circuit 2, of Figure 12-3, has the two equations: 

   x5  =  x1        x8  =  x7 

added to the listed equations for the input/output relationships of the circuit. 

Internal fan-out and fan-in are handled in a similar manner. Additional examples are presented later to 
demonstrate the procedure. 

12.2.1.2 Required Labeling 

There is a labeling convention which has been used in the above equations and which has been given the 
name TNC (Terminal Numbering Convention) in previous papers. Under this convention, the primary input 
lines are labeled with the lowest variables (x0 , x1 are the two most common starting labels). Each gate input 
and output receives a distinct [unique] label with the convention that, for any gate, the indices of the labels 
on the inputs are each lower than the index (indices) of the output(s). Any intermediate variables created by 
fan-out are indexed to comply with this convention. The primary outputs (one or more) receive the highest 
indices for their variables.  

Proper labeling has been shown in Figure 12-3. 

12.2.1.3 Equation Reformation 

After constructing all of the equations for a circuit, these equations are solved to produce the Existence 
Function of the circuit. 

The initial form of the equation is: 



Fault Detection Techniques   7 

 
The formalism is usually discarded and the form noted as simply: 

F = G 

These equations express the validity requirements which must be satisfied for the function to be true, that is, 
for the circuit output to be logical "1". Therefore: 

(F = G)   <==>  (y = 1) 

where y denotes the output. 

Equations in the form (F = G) may be rewritten as: 

 
which expresses the validity requirements for the complement function. Therefore: 

 
The terms of the rewritten equations are either in the form FG or FG and are referred to as the terms of Y, 
where Y = y. (underscore for negation) 

12.2.1.4 Generating the Existence Function 

A system of equations in the form    are solved by the Boolean Analyzer when it is operated 
in the binary mode. The processing will result in the canceling of all points in the logical space of the system 
of equations which are covered by at least one of the Terms of Y. This actually "cancels" the points of the 
Existence Function of Y, leaving its compliment function, the Existence Function of y, in the memory. 

For convenience, the Existence Function can be given the form of the Discriminant of the system of 
equations. This form uses all known variables as the independent (horizontal) index, and all known variables 
as the dependant (vertical) index. [Referencing the maps.] 

The existence Function contains information about all behavioral properties of the circuit. Fault testing 
problems are solvable by either: 

1) Adding equations to the systems of equations prior to generating the existence functions; 

2) Performing further processing (with software) on the Existence Function after it is generated. 

To demonstrate the generation of an existence Function, Figure 12-4 details the procedure for Circuit 1 of 
Figure 12-3. The canceled points or squares represent the Existence Function of Y. The remaining points 
are the desired points of the Existence Function of y. The function is repeated at the top of Figure 12-5. 
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Figure 12-4  Existence Function Generation 
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Figure 12-5  Link Formation 

12.2.2 Deriving the Test Sequence 

12.2.2.1 Formation Rules 

A Test Sequence is actually a sequence of test or input vectors which are represented by the indices of the 
known variables of selected points on the Existence Function.  These points are the “one” points of the 
Existence Function, which are interconnected by links or bars. 

A link or bar is formed by connecting any two points in the logical space of the Existence Function of a 
system which satisfy both of the following conditions: 

1) The two points are logical distance one apart in the space of the known (horizontal) axis. Note: 
Logical distance one is defined as the distance between two points in a logical space whose 
minterms differ by one and only one variable. 

2) The two points are such that they differ in at least one observable output variable. Note: The 
observable outputs are the primary outputs. 

Figure 12-5 presented the Existence Function of Circuit 1 of Figure 12-3. The lower map shown in Figure 
12-5 is the Existence Function redrawn with some of the possible links added, specifically, those links 
formed when the input variable x1 or the input variable x2 is used as the horizontal measure of logical 
distance. 
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Figure 12-4 shows how an Existence Function is generated. Using the equations of the system being 
mapped, the Existence Function is formed by canceling all points in the logical space which are covered by 
at least one of the terms from the equation (from F = G). For convenience, the circuit primary inputs are 
used as the known (horizontal axis) (x1, x2, x3, and x4), and the remaining variables, intermediate and 
outputs both, are used as the unknown (vertical) axis. (x7, x6, and x5) 

Continuing into Figure 12-5, following the cancellation of all points covered by one or more terms, the 
remaining points in the logical space are the ones of the Existence Function for the circuit. Also in Figure 
12-5, the lower map shows the partial interconnection of links. Those shown are formed from observing a 
change in the output variable x7 when either input variable x1 or x2 is changed, but not both. (EXOR) 

12.2.2.2 Chain Selections 

When all of the possible bars or links have been formed, there will be one or more chains, which are sets 
of interconnected links. 

The longest chain will produce the desired Test Sequence.  

There are cases where there is no unique longest chain. These cases are; 

1) When a circuit is redundant, there are two or more sequences of equal length, and only one is 
necessary for fault detection. (Either one.) 

2) Certain functions in which the terms of the function share no common true or complimented 
variables. 

For those cases requiring two or more disconnected chains, a connecting sequence is used to join them.  
A connecting sequence must be the minimal length required to join the two Test Sequences, while keeping 
its own point logical distance one apart. [Think of this a stepping from one to the other.] This later 
requirement is to reduce the hazards that could otherwise be introduced by testing. 

The completed linking for the example circuit is given in Figure 12-6. The short chains are discarded and the 
resulting Test Sequence is 5-7-6-14-10-11-9-13-5. 

 

Figure 12-6  The Test Sequence 
At first, it was believed that it was sufficient to pick out a closed subset of points along the chain such that 
each type of link (each input variable variation) was included. By examining the results of other test set 
generation methods, and by a close evaluation of the results produced by these methods and by the Test 
Sequence method, it has been determined that the entire chain is necessary. 

The use of the entire chain of points ensures complete testing of both single and multiple faults. This 
includes those multiple faults which do not have single fault equivalences. The nature of the Test Sequence 
is such that each variable is tested for its ability to change value from ‘1’ to ‘0’ and from ‘0’ to ‘1’. 

From Figure 12-6: with all the valid links in place, the links connecting points in columns 1-3-2 and those 
connecting 4-12-8 are not chained to a sufficient length. The remaining chain connects 5-7-6-14-10-11-9-13-
5.  

Examination of the sequence of index values shows that, when applied to Circuit 1, each of the input 
variables will be tested independently for a change from 0 to 1 and again for a change in value from 1 to 0.  
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Each of the intermediate variables is also tested in as thorough a manner, and it is obvious from the rules of 
link formation that the output variable (or variables) is (are) tested. 

12.2.2.3 Advantages of the Test Sequence 

There are several desirable advantages offered by the Test Sequence. 

1) The test Sequence may be produced by the Boolean Analyzer, a hardware unit with a speed 
advantage over software approaches to test-set generation. [1979] 

2) An automated tester using the Test Sequence would not require continual resetting (set to 
known state) between tests and, therefore, throughput with the approach will be higher. 

3) The requirement that there be no more than logical distance one between tests reduces the 
possibility of hazard introduction due to multiple test lead level changes. 

4) The Test Sequence formation rules require that, upon the application of any test after the first, 
at least one observable output will change its logic level. This makes the detection of a failure 
logically straightforward. 

5) The Test Sequence exercises every circuit variable through two-way logic level changes; that 
is, from ‘1’ to ‘0’ and from ‘0’ to ‘1’. This ensures the detection of temporarily correct variables 
(those variables which change value and then become stuck at that value). As an aide, a 
diagram referred to as the Diagnostic Continuity diagram has been developed which 
represents graphically the variables which should change levels when the input changes from 
test to test. (See Figure 12-7.) 

 

Figure 12-7  Diagnostic Continuity Diagram 
6) The Test Sequence is complete in its coverage of all detectable single faults. For those 

examples studied, the Test Sequence also covered the multiple faults which were not 
equivalent to signal faults.  

7) The Test Sequence is closed, that is, it returns to the initial test. This reduces the resetting 
needed between circuits and may also have an advantage when intermittent fault detection is 
attempted. [Again, in terms of testing in 1979.] 
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8) There is also the possibility that the natural order of the Test Sequence will be advantageous 
in the detection of bridging faults. However, this topic was not researched with the Test 
Sequence by this author. 

From the above advantages, it is concluded that coupling an automated tester of parallel input classification 
to the Test Sequence procedure will provide an economical and feasible solution to the fault detection 
problem for combinational circuits. 

12.2.2.4 Possible Extension to Sequential Circuits 

As an aside to the main line of research, a brief examination of sequential circuits has been made. 

For sequential circuits, primary input variables are the known variables; primary output variables, 
intermediate variables, and feedback variables are the unknown variables. Formation of the linking for these 
cases requires a different approach, and this is an area of future research.  It is believed that the Test 
Sequence approach can be extended to sequential circuits. 

Note: It was used to develop a successful minimal sequence for functional testing for a cross-bar switch. 
See Logic Design for Array-Based Circuits. 

12.3 Examples 

This section presents a few of the combinational circuits which were used in the research. The examples are 
ordered on the basis of their size. 

12.3.1 Elementary Gates 
The first example is a set of elementary gates, shown with their Existence Functions and Test Sequences in 
Figure 12-8. In accordance with their definitions by truth table, the OR and NOR gats are seen to have 
complementary Existence Functions, and they may be tested using the same Test Sequence.  The same 
can be said of the AND and NAND gates. The Test Sequences on both cases contain the identical test 
specified by Eldred, and by others, for testing these individual gates, as was expected. 
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Figure 12-8  Test Sequences for Elementary Gates 
 

12.3.2 Test Sequence vs. Boolean Difference 
An example from the paper by Marinos is given in Figure 12-9. This example was analyzed in detail by 
Marinos using the Partial Boolean Difference approach, and the minimized test set that he derived is given 
on the second page of the figure. Both of the system equations for the circuit, which has three fanout lines, 
and the Terms of Y, where Y = x10 = f (underscore for negation) are presented. 

Due to the size of the full Existence Function (211 = 2,048 points), a scheme for computing the Test 
Sequence from an ordered listing of its “1” points has been used. The points are tabulated on the second 
page with an “*” to denote points chosen for the Test Sequence (for this case, there is only one chain). 

The test set is formed by the tests in the Test Sequence and that found by Marinos are seen to be identical. 
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Figure 12-9  An Example from Marinos (see references) 
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Figure 12-9  Con’t  

12.3.3 A Diagnostic Table 
A fan-out example is shown in Figure 12.10 with its equations and, again, due to the size of the Existence 
Function (212 = 4,096 points), only the ‘1’ points are shown. The links have again been added to the value 
table. 

As a means of evaluating the Y=Test Sequence, a Diagnostic Table, similar to a fault table, was designed 
and is presented in Figure 12.11. The links are grouped as row labels according to the input variable which 
alters value, and the indices of all circuit variables are used as column headings.  

• A ‘+’ indicates  that a variable changes its logical value from ‘0’ to ‘1’;  

• A ‘-’ means that the reverse occurs;  

• A blank (b  or ‘ ‘) means that no change has occurred (the links are shown for one direction only). 
This is a tabular version of the Diagnostic Continuity diagram. 

• The Test Sequence points are shown by ’#’ 

• The Test Set points generated by authors Bearnson and Carroll are shown by ‘*’ 

One variable of the link pair appearing in the Test Set is sufficient for the ‘*’ to appear on that link. As can be 
seen, the methods produced equivalent tests. The variation is between tests 7 and 3, which, when all 
variable are scanned for these two input configurations, are seen to produce identical internal and output 
values. 
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Figure 12-10  An Example for Bearnson and Carroll 
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Figure 12-11  Tabular Sequence Generation 
 

12.3.4 Equivalent Circuits: Test Sequence vs. Kohavi's Maps 
An example circuit is sh own in Figure 12-12 and in Figure 12-13b. Figure 12-12 shows the labeling used in 
Kohavi’s paper and also TVC labeling. The equations are given and the Existence Function ‘1’ points are 
tabled along with the decimal index of the input variables. Both the Test Set derived by Kohavi and the Test 
Sequence are given. Note the use by the Test Sequence of two of the three tests given as equivalents in the 
Test Set, 0 and 4, ad the addition of 2 (DCBA) as a test. (Underscore as negation) 

BOOLE, an APL program which emulates the Boolean Analyzer generation of the Existence Function, has 
been used as a “check”. Figure 12-14 presents the output generated by BOOLE when the input terms listed 
are used.  Note that APL uses E (underscore for negation) and uses letters of the alphabet for the line labels 
rather than the xi (TNC labeling was not use din the program due to memory size limitation). The Test 
Sequence produced by this version is the same as before. (Figure 12-12) 

The circuit is repeated with two others in Figure 12-13. Circuits a. and b. are equivalent when their 
Marquand maps are compared; Circuit c. is a complementary circuit. 

The BOOLE output for the analysis of Circuit c. is shown in Figure 12-15. Note that all three circuits have the 
same Test Sequence. There and other examples support the idea proposed by Akers and others that 
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equivalent circuits, i.e., various implementations of a function, can be tested by the same test set. For the 
circuits shown, it is hypothesized that complementary equivalents, i.e., the various implementations of the 
complement of a function, can also be tested by this Test Set. 

 

Figure 12-12  An Example from Kohavi and Kohavi (see references)  
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Figure 12-13  Three Example Circuits from Kohavi and Kohavi (see references) 
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Figure 12-14  BOOLE Output for Figure 12-12 

 

Figure 12-15  BOOLE Output for Figure 12-13.c 
 

12.3.5 Multiple Faults 
An example from the paper by Yau and Tang on multiple faults appears in Figure 12-16. The Test Set they 
generated for multiple fault detection for this circuit is seen to contain the same points as appear in the Test 
Sequence. The Diagnostic Continuity Diagram for this circuit is given in Figure 12-17.  

The classic approach to Test Set minimization of the fault Test Set minimization uses a Fault Table and 
treats the minimization of the fault test set as a coverage problem. (Note that the latest algorithm for the 
Boolean Analyzer is the Coverage Algorithm.) The fault table for the example is given in Figure 12-18. It 
should be noted as well that the Test Set thus generated omitted 7 as a necessary test. 
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Figure 12-16  Multiple Fault Testing Example from Yau and Tang (see references)  
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Figure 12-17  Diagnostic Continuity Diagram for Figure 12-16 
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Figure 12-18  Fault Table Test Set Generation for Figure 12-16 

12.4 Summary 

Many other methods for test set generation exist in the literature. Most of these become unmanageable for 
large circuits. 

The main objective of present research has been to find efficient programmable algorithms. Of the existing 
methods which were studies, Roth's D-Algorithm program set appears to be the most complete.  

While the Test Sequence presented [herein] is programmable, it is also possible to produce the results using 
the Boolean Analyzer. The method is, therefore, a hardware solution to the fault detection problem.  

The test sequence generation method described is intended for use with any multilevel, combinational 
circuit. It will also perform stable state test generation for sequential circuits; further research is needed to 
define a complete procedure for sequential circuits. 

There has been sufficient indication from the results of the examples which have been studied to 
hypothesize that the generation of the Test Sequence does not require knowledge of the internal functional 
logic of a circuit. [Blackbox.]  

The number of variables which may be handled is presently limited to the number of variables which the 
Analyzer is designed to process, i.e., twenty-two. 

For circuits which fit the size restriction, a complete, minimal test sequence is produced. 
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